已知點的直角坐標分別為(3,
3
),(0,-
5
3
),(
7
2
,0),(-2,-2
3
),求它們的極坐標.
考點:簡單曲線的極坐標方程
專題:坐標系和參數(shù)方程
分析:利用ρ=
x2+y2
,x≠0,tanθ=
y
x
,即可得出.
解答: 解:利用ρ=
x2+y2
,x≠0,tanθ=
y
x
,
可得:極坐標分別為:(2
3
,
π
6
)
(
5
3
,
2
)
,(
7
2
,0)
,(4,
3
)
點評:本題考查了直角坐標方程化為極坐標,考查了推理能力與計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y=-
x2
a
+2x(a>0),過原點的直線l平分由拋物線與x軸所圍成的封閉圖形的面積,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將同一張紙片折10次后的厚度為m,與折20次后的厚度n對比,小明說“n=2m”,小剛說“n=4m”,小麗說“n=210m”,你認為誰的說法對呢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個身高1.8m的人,以1.2m/s的速度離開路燈,路燈高4.2m.
(1)求身影的長度y與人距路燈的距離x之間的關系;
(2)解釋身影長的變化率與人步行速度的關系;
(3)求x=3m時,身影長的變化率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以平面直角坐標系的原點為極點,x軸的非負半軸為極軸,建立極坐標系,兩種坐標系取相同的長度單位,曲線C1的參數(shù)方程為
x=-2+t
y=at
(t
為參數(shù)),曲線C2的極坐標方程為ρ=4cosθ,若C1與C2有兩個不同的交點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊上的點P的坐標如下,分別求出角α的正弦、余弦、正切值.
(1)P(3,-4);(2)P(-1,2);(3)P(
1
2
,-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=8x的焦點到雙曲線x2-
y2
3
=1的一條漸近線的距離為(  )
A、1
B、2
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,雙曲線的中心在原點,焦點在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、2
B、
3
C、
5
2
D、
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z滿足(1+i)z=1-i,其中i為虛數(shù)單位,則z=(  )
A、-iB、iC、-1D、1

查看答案和解析>>

同步練習冊答案