分析 (Ⅰ)利用點P到兩個頂點M(-1,0),N(1,0)距離的比為$\sqrt{2}$,建立等式,化簡,即可求得動點P的軌跡C的方程;
(Ⅱ)設出直線方程,代入軌跡C的方程,利用韋達定理,證明kBN-kQN=0,即可得出結(jié)論.
解答 (Ⅰ)解:設P(x,y),則
∵點P到兩個頂點M(-1,0),N(1,0)距離的比為$\sqrt{2}$,
∴$\sqrt{(x+1)^{2}+{y}^{2}}$=$\sqrt{2}•\sqrt{(x-1)^{2}+{y}^{2}}$,
整理得x2+y2-6x+1=0,
∴動點P的軌跡C的方程是x2+y2-6x+1=0;
(Ⅱ)證明:由題意,直線l存在斜率,設為k(k≠0),直線l的方程為y=k(x+1)
代入x2+y2-6x+1=0,
化簡得(1+k2)x2+(2k2-6)x+k2+1=0,
△>0,可得-1<k<1.
設A(x1,y1),B(x2,y2),則Q(x1,-y1),且x1x2=1,
∴kBN-kQN=$\frac{{y}_{2}}{{x}_{2}-1}$-$\frac{-{y}_{1}}{{x}_{1}-1}$=$\frac{2k({x}_{1}{x}_{2}-1)}{({x}_{1}-1)({x}_{2}-1)}$=0,
∴B,N,Q在同一條直線上.
點評 本題考查軌跡方程,考查直線與圓的位置關系,考查韋達定理的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | S△OBM=S△ENF+S△MNC | B. | S△OBM=S△ENF-S△MNC | ||
C. | S△OBM+S△ENF=S△MNC | D. | S△OBM+S△ENF=2S△MNC |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{π}{6}$,$\frac{π}{3}$] | B. | [$\frac{π}{4}$,$\frac{π}{2}$] | C. | [$\frac{π}{12}$,$\frac{π}{2}$] | D. | [$\frac{π}{12}$,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1,2} | B. | {0,1} | C. | [0,1] | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{45}{2}$ | B. | 45 | C. | $\frac{135}{2}$ | D. | 90 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com