雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),雙曲線l的漸近線與拋物線y2=8x的準(zhǔn)線的一個(gè)交點(diǎn)縱坐標(biāo)為-1,則雙曲線的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:分別求出拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,由已知條件推導(dǎo)出b=2a,由此能求出雙曲線的離心率.
解答: 解:∵拋物線y2=8x的準(zhǔn)線方程為x=-2,
雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程為y=±
b
a
x
,
雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與拋物線y2=8x的準(zhǔn)線的一個(gè)交點(diǎn)縱坐標(biāo)為-1,
∴點(diǎn)(-2,-1)在y=
b
a
x
上,
∴a=2b,
c=
a2+
1
4
a2
=
5
2
a
,
e=
c
a
=
5
2

故答案為:
5
2
點(diǎn)評(píng):本題考查雙曲線的離心率的求法,是中檔題,解題時(shí)要認(rèn)真審題,要熟練掌握拋物線和雙曲線的簡(jiǎn)單性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-
2
3
ax3(a>0),x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若對(duì)于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-1)2+alnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:“0<a<
4
9
”是函數(shù)f(x)有三個(gè)零點(diǎn)的必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程
3
sinx+cosx=k在區(qū)間[0,
π
2
]上有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)對(duì)任意的x∈R都有f(x+3)=-f(x+1),且f(2)=2014,則f[f(2014)+2]+3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校組織數(shù)學(xué)競(jìng)賽,學(xué)生成績(jī)?chǔ)?N(100,σ2),P(ξ≥120)=a,P(80<ξ≤100)=b,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)集M={(x,y)|y=f(x)},若對(duì)任意點(diǎn)P1(x1,y1)∈M,存在點(diǎn)P2(x2,y2)∈M,使得
OP1
OP2
=0成立,則稱集合M是“幸福點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={(x,y)|y=
1
x
};          
②M={(x,y)|y=1+cos2x};
③M={(x,y)|y=lnx};         
④M={(x,y)|y=ex-1-2}.
其中是“幸福點(diǎn)集”的序號(hào)是
 
(填出所有滿足條件的集合序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一口袋中放有質(zhì)地、大小完全相同的6個(gè)球,編號(hào)分別為1,2,3,4,5,6,甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,甲、乙兩人所摸球的編號(hào)不同的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的圖象與直線x=a,x=b及x軸所圍成的圖形的面積稱為f(x)在[a,b]上的面積,則函數(shù)y=sin(nx)(n>0)在[0,
π
n
]上的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案