考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用,函數(shù)在某點(diǎn)取得極值的條件,利用導(dǎo)數(shù)研究函數(shù)的極值
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),可得f(x)的單調(diào)區(qū)間,從而求出函數(shù)的極值;
(Ⅱ)由f(0)=f(
)=0及(Ⅰ)知,當(dāng)x∈(0,
)時(shí),f(x)>0;當(dāng)x∈(
,+∞)時(shí),f(x)<0.設(shè)集合A={f(x)|x∈(2,+∞)},集合B={
|x∈(1,+∞),f(x)≠0},則對(duì)于任意的x
1∈(2,+∞),都存在x
2∈(1,+∞),使得f(x
1)•f(x
2)=1,等價(jià)于A⊆B,分類(lèi)討論,即可求a的取值范圍.
解答:
解:(Ⅰ)f′(x)=2x-2ax
2=2x(1-ax),令f(x)=0,解得x=0或x=
.
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (-∞,0) | 0 | (0,) | | (,+∞) |
f′(x) | - | 0 | + | 0 | - |
f(x) | 遞減 | 0 | 遞增 | | 遞減 |
所以,f(x)的單調(diào)遞減區(qū)間為:(-∞,0)和
(,+∞),單調(diào)遞增區(qū)間為
(0,),
當(dāng)x=0時(shí),有極小值f(0)=0,當(dāng)x=
時(shí),有極大值f(
)=
;
(Ⅱ)由f(0)=f(
)=0及(Ⅰ)知,當(dāng)x∈(0,
)時(shí),f(x)>0;當(dāng)x∈(
,+∞)時(shí),f(x)<0.
設(shè)集合A={f(x)|x∈(2,+∞)},集合B={
|x∈(1,+∞),f(x)≠0},則對(duì)于任意的x
1∈(2,+∞),都存在x
2∈(1,+∞),使得f(x
1)•f(x
2)=1,等價(jià)于A⊆B,顯然A≠∅
下面分三種情況討論:
①當(dāng)
>2,即0<a<
時(shí),由f(
)=0可知,0∈A,而0∉B,∴A不是B的子集;
②當(dāng)1≤
≤2,即
≤a≤時(shí),f(2)≤0,且f(x)在(2,+∞)上單調(diào)遞減,故A=(-∞,f(2)),∴A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范圍包含(-∞,0),即(-∞,0)⊆B,∴A⊆B;
③當(dāng)
<1,即a>
時(shí),有f(1)<0,且f(x)在(1,+∞)上單調(diào)遞減,故B=(
,0),A=(-∞,f(2)),∴A不是B的子集.
綜上,a的取值范圍是[
,].
點(diǎn)評(píng):利用導(dǎo)數(shù)可以求出函數(shù)的單調(diào)區(qū)間和極值;解決取值范圍問(wèn)題,很多時(shí)候要進(jìn)行等價(jià)轉(zhuǎn)化,分類(lèi)討論.