7.如圖,在直三棱柱ABC-A1B1C1中,AB=$\sqrt{3},BC=1,A{A_1}$=AC=2,E,F(xiàn)分別為A1C1,BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE.

分析 (1)運(yùn)用直三棱柱側(cè)棱垂直于底面,以及勾股定理的逆定理,由線面垂直的判定定理可得AB⊥平面B1BCC1,再由面面垂直的判定定理即可得證;
(2)取AB的中點(diǎn)G,連接EG,F(xiàn)G,運(yùn)用平行四邊形的判定和性質(zhì),結(jié)合線面平行的判定定理,即可得證.

解答 (1)證明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,
∴BB1⊥AB,∵$AB=\sqrt{3},BC=1,AC=2$
∴AB⊥BC,
∵BC∩BB1=B,∴AB⊥平面B1BCC1,
又AB?平面ABE,
∴平面ABE⊥平面B1BCC1
(2)證明:取AB的中點(diǎn)G,連接EG,F(xiàn)G,
∵E,F(xiàn)分別是A1C1,BC的中點(diǎn),
∴$FG∥AC,F(xiàn)G=\frac{1}{2}AC$,∵$AC\underline{\underline∥}{A_1}{C_1}$,∴$FG\underline{\underline∥}E{C_1}$,
∴FGEC1為平行四邊形,∴C1F∥EG,
又EG?平面ABE,C1F?平面ABE,
∴C1F∥平面ABE.

點(diǎn)評(píng) 本題考查面面垂直的判定和線面平行的判斷,注意運(yùn)用線面垂直的判定定理和性質(zhì)定理,以及線面平行的判定定理,同時(shí)考查平面幾何的有關(guān)知識(shí),考查推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)正項(xiàng)等差數(shù)列{an}的前n項(xiàng)和為Sn,且an=$\sqrt{{S}_{2n-1}}$(n∈N*).若對(duì)任意正整數(shù)n,都有λ>$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$恒成立,則實(shí)數(shù)λ的取值范圍為$[\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在數(shù)列{an}中,an=n2-22n+10,則滿足am=an(m≠n)的等式有( 。
A.8個(gè)B.9個(gè)C.10個(gè)D.11個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$y=\sqrt{{x^2}+2x-3}$的單調(diào)減區(qū)間為( 。
A.(-∞,-3]B.(-∞,-1]C.[1,+∞)D.[-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,已知R(x0,y0)是橢圓C:$\frac{x^2}{24}+\frac{y^2}{12}$=1上的一點(diǎn),從原點(diǎn)O向圓R:(x-x02+(y-y02=8作兩條切線,分別交橢圓于P,Q兩點(diǎn).
(1)若R點(diǎn)在第一象限,且直線OP、OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1,k2,求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線l1與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)交于A,B兩點(diǎn),且AB中點(diǎn)M的橫坐標(biāo)為b,過M且與直線l1垂直的直線l2過雙曲線C的右焦點(diǎn),則雙曲線的離心率為( 。
A.$\frac{1+\sqrt{5}}{2}$B.$\sqrt{\frac{1+\sqrt{5}}{2}}$C.$\frac{1+\sqrt{3}}{2}$D.$\sqrt{\frac{1+\sqrt{3}}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|2x-a|+a.
(Ⅰ)當(dāng)a=3時(shí),求不等式f(x)≤6的解集;
(Ⅱ)設(shè)函數(shù)g(x)=|2x-1|,當(dāng)x∈R時(shí),f(x)+g(x)≥2a2-13,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.已知a=3,$c=\sqrt{2}$,$cosA=-\frac{{\sqrt{10}}}{10}$,則b=( 。
A.$\sqrt{5}$B.$\sqrt{6}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若p:x<-1,q:x<-4,則?p是?q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案