12.已知直線l1與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)交于A,B兩點(diǎn),且AB中點(diǎn)M的橫坐標(biāo)為b,過M且與直線l1垂直的直線l2過雙曲線C的右焦點(diǎn),則雙曲線的離心率為( 。
A.$\frac{1+\sqrt{5}}{2}$B.$\sqrt{\frac{1+\sqrt{5}}{2}}$C.$\frac{1+\sqrt{3}}{2}$D.$\sqrt{\frac{1+\sqrt{3}}{2}}$

分析 由A,B代入雙曲線方程,作差整理可得k=$\frac{c-b}{{y}_{M}}$=$\frac{^{3}}{{a}^{2}{y}_{M}}$,化簡得a2=bc,即可求出雙曲線的離心率.

解答 解:設(shè)A(x1,y1),B(x2,y2),M(b,yM),
由A,B代入雙曲線方程,作差整理可得k=$\frac{c-b}{{y}_{M}}$=$\frac{^{3}}{{a}^{2}{y}_{M}}$,
化簡得a2=bc,
即a4=(c2-a2)c2,有e4-e2-1=0,得e=$\sqrt{\frac{1+\sqrt{5}}{2}}$.
故選B.

點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線C:y2=4x的焦點(diǎn)是F,過點(diǎn)F的直線與拋物線C相交于P、Q兩點(diǎn),且點(diǎn)Q在第一象限,若$3\overrightarrow{PF}=\overrightarrow{FQ}$,則直線PQ的斜率是( 。
A.$\frac{{\sqrt{3}}}{3}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若曲線y=x2+ax+b在點(diǎn)(0,b)處的切線方程是x-y+1=0,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=2sinωx(ω>0)的圖象與直線y=-2的相鄰的兩個公共點(diǎn)之間的距離為$\frac{2π}{3}$,則ω的值為( 。
A.$\frac{1}{3}$B.$\frac{3}{2}$C.3D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在直三棱柱ABC-A1B1C1中,AB=$\sqrt{3},BC=1,A{A_1}$=AC=2,E,F(xiàn)分別為A1C1,BC的中點(diǎn).
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F∥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-ax2在x=1處的切線與直線x-y+1=0垂直.
(Ⅰ)求函數(shù)y=f(x)+xf′(x)(f′(x)為f(x)的導(dǎo)函數(shù))的單調(diào)遞增區(qū)間;
(Ⅱ)記函數(shù)g(x)=f(x)+$\frac{3}{2}$x2-(1+b)x,設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點(diǎn),若b≥$\frac{{e}^{2}+1}{e}$-1,且g(x1)-g(x2)≥k恒成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知sinα=$\frac{1}{5}$,α∈($\frac{π}{2}$,π),則sin2α的值為$-\frac{4}{25}\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=|x-1|+|x+a|,g(a)=a2-a-2.
(1)當(dāng)a=3,解關(guān)于x的不等式f(x)>g(a)+2;
(2)當(dāng)x∈[-a,1)時恒有f(x)≤g(a),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線y2=4x的焦點(diǎn)F與橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個焦點(diǎn)重合,它們在第一象限內(nèi)的交點(diǎn)為P,且PF與x軸垂直,則橢圓的離心率為( 。
A.$\sqrt{3}-\sqrt{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊答案