【題目】已知集合A={x|﹣2≤x≤5},B={x|m﹣4≤x≤3m+3}.
(1)若AB,求實數(shù)m的取值范圍;
(2)若A∩B=B,求實數(shù)m的取值范圍.
【答案】
(1)解:∵集合A={x|﹣2≤x≤5},B={x|m﹣4≤x≤3m+3}.
AB,
∴ ,
解得1≤m≤2.
∴實數(shù)m的取值范圍是[1,2]
(2)解:∵A∩B=B,∴BA,
①當(dāng)B=時,賊》3m+2,∴m<﹣3符合題意;
②當(dāng)B≠時, ,無解.
綜上可得,m<﹣3.
∴實數(shù)m的取值范圍是(﹣∞,﹣3)
【解析】(1)由AB,列出不等式組,即可求解實數(shù)m的取值范圍.(2)由A∩B=B,根據(jù)B=和B≠分類討論,分別求解實數(shù)m的取值范圍,取并集即可求解m的取值范圍.
【考點精析】利用集合的交集運算對題目進(jìn)行判斷即可得到答案,需要熟知交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于,兩點.
(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過的定點的坐標(biāo);
(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】朱世杰是歷史上最未打的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天發(fā)大米3升,共發(fā)出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應(yīng)發(fā)大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若直線與曲線的交點的橫坐標(biāo)為,且,求整數(shù)所有可能的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)在5次英語口語測試中的成績統(tǒng)計如圖的莖葉圖所示.
(注:樣本數(shù)據(jù)x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示樣本均值)
(1)現(xiàn)要從中選派一人參加英語口語競賽,從兩同學(xué)的平均成績和方差分析,派誰參加更合適;
(2)若將頻率視為概率,對學(xué)生甲在今后的三次英語口語競賽成績進(jìn)行預(yù)測,記這三次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在[1,+∞)上的函數(shù)f(x)= 給出下列結(jié)論:
①函數(shù)f(x)的值域為(0,8];
②對任意的n∈N,都有f(2n)=23﹣n;
③存在k∈( , ),使得直線y=kx與函數(shù)y=f(x)的圖象有5個公共點;
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“存在n∈N,使得(a,b)(2n , 2n+1)”
其中正確命題的序號是( )
A.①②③
B.①③④
C.①②④
D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的上下兩個焦點分別為, ,過點與軸垂直的直線交橢圓于、兩點, 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點,直線: 與軸交于點,與橢圓交于, 兩個不同的點,若存在實數(shù),使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù),當(dāng)時, ,則關(guān)于的函數(shù)的所有零點之和為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com