4.已知向量$\overrightarrow{a}$=(2,3,0),$\overrightarrow$=(-3,0,4),且k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$互相垂直,則k=$\frac{31}{19}$.

分析 利用平面向量坐標(biāo)運(yùn)算法則先分別求出k$\overrightarrow{a}$+$\overrightarrow$和$\overrightarrow{a}$-$\overrightarrow$,再由k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$互相垂直,能求出k的值.

解答 解:∵向量$\overrightarrow{a}$=(2,3,0),$\overrightarrow$=(-3,0,4),
∴k$\overrightarrow{a}$+$\overrightarrow$=(2k-3,3k,4),$\overrightarrow{a}$-$\overrightarrow$=(5,3,-4),
∵k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$互相垂直,
∴(k$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)=5(2k-3)+3×3k+(-4)×4=0,
解得k=$\frac{31}{19}$.
故答案為:$\frac{31}{19}$.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面向量運(yùn)算法則和向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|x|+$\frac{m}{x}$-2(x≠0).
(1)當(dāng)m=2時(shí),判斷f(x)在(-∞,0)的單調(diào)性,并用定義證明;
(2)若f(2x)>0對(duì)x∈R恒成立,求m的取值范圍;
(3)討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x+y≤3\\ x≥1\\ y≥1\end{array}\right.$,則$z=\frac{y}{x}$的最大值為  ( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的上下兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1與y軸垂直的直線交橢圓C于M,N兩點(diǎn),△MNF2的面積為$\sqrt{3}$,橢圓C的離心率為$\frac{\sqrt{3}}{2}$
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知O為坐標(biāo)原點(diǎn),直線l:y=kx+m與y軸交于點(diǎn)P,與橢圓C交于A,B兩個(gè)不同的點(diǎn),若存在實(shí)數(shù)λ,使得$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)變量x、y滿足約束條件$\left\{\begin{array}{l}{y≤x}&{\;}\\{x+y≥2}&{\;}\\{y≥3x-6}&{\;}\end{array}\right.$,則目標(biāo)函數(shù)Z=4x+y+3的最小值為( 。
A.5B.8C.11D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法錯(cuò)誤的是( 。
A.經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面
B.經(jīng)過兩條相交直線,有且只有一個(gè)平面
C.平面α與平面β相交,它們只有有限個(gè)公共點(diǎn)
D.如果兩個(gè)平面有三個(gè)不共線的公共點(diǎn),那么這兩個(gè)平面重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若關(guān)于x的不等式|x+1|-|x-2|>a2+2a有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為( 。
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知g(x)=x2-2ax+1在區(qū)間[1,3]上的值域[0,4].
(1)求a的值;
(2)若不等式g(2x)-k•4x≥0在x∈[1,+∞)上恒成立,求實(shí)數(shù)k的取值范圍;
(3)若函數(shù)$y=\frac{{g(|{2^x}-1|)}}{{|{2^x}-1|}}+k•\frac{2}{{|{2^x}-1|}}-3k$有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中正確的是( 。
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”
C.在△ABC中,A>B是cosA<cosB的必要不充分條件
D.若p∧(¬q)為假,p∨(¬q)為真,則p,q同真或同假

查看答案和解析>>

同步練習(xí)冊(cè)答案