已知函數(shù)y=2sin(2x+
π6
)
.x∈R
(1)求該函數(shù)的最大值,并求出取得最大值時相應(yīng)的x的值;
(2)求該函數(shù)圖象的對稱軸和對稱中心;
(3)求該函數(shù)的單調(diào)遞增區(qū)間.
分析:(1)利用正弦函數(shù)的最值,可求函數(shù)的最大值,并求出取得最大值時相應(yīng)的x的值;
(2)利用正弦函數(shù)的對稱軸和對稱中心,可求該函數(shù)圖象的對稱軸和對稱中心;
(3)利用正弦函數(shù)的單調(diào)遞增區(qū)間,可求該函數(shù)的單調(diào)遞增區(qū)間.
解答:解:(1)函數(shù)的最大值為2,取得最大值時,2x+
π
6
=
π
2
+2kπ
,即x=kπ+
π
6
(k∈Z);
(2)由2x+
π
6
=kπ+
π
2
,可得函數(shù)圖象的對稱軸為x=
2
+
π
6
(k∈Z);由2x+
π
6
=kπ
,可得函數(shù)的對稱中心為(
2
-
π
12
,0)(k∈Z);
(3)由2x+
π
6
∈[-
π
2
+2kπ,
π
2
+2kπ]
,可得該函數(shù)的單調(diào)遞增區(qū)間為[-
π
3
+kπ,
π
6
+kπ
].
點評:本題考查三角函數(shù)的性質(zhì),考查學(xué)生的計算能力,正確運用正弦函數(shù)的性質(zhì)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)y=2sin(ωx+φ)(ω>0))在區(qū)間[0,2π]的圖象如圖:那么ω=(  )
A、1
B、2
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(wx+θ)為偶函數(shù),其圖象與直線y=2某兩個交點的橫坐標(biāo)分別為x1,x2,若|x2-x1|的最小值為π,則該函數(shù)在區(qū)間( 。┥鲜窃龊瘮(shù).
A、(-
π
2
,-
π
4
)
B、(-
π
4
π
4
)
C、(0,
π
2
)
D、(
π
4
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sinωx(ω>0)在[-
π
3
,
π
4
]
上單調(diào)遞增,則實數(shù)ω的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2
sin(2x+
π
4
)+2
,求
(1)函數(shù)的最小正周期是多少?
(2)函數(shù)的單調(diào)增區(qū)間是什么?
(3)函數(shù)的圖象可由函數(shù)y=
2
sin2x(x∈R)
的圖象如何變換而得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4個命題:
①已知函數(shù)y=2sin(x+?)(0<?<π)的圖象如圖所示,則φ=
π
6
5
6
π;
②在△ABC中,∠A>∠B是sinA>sinB的充要條件;
③定義域為R的奇函數(shù)f(x)滿足f(1+x)=-f(x),則f(x)的圖象關(guān)于點(
1
2
,0)
對稱;
④對于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個零點;其中正確命題序號

查看答案和解析>>

同步練習(xí)冊答案