精英家教網(wǎng)如圖:直三棱柱ABC-A′B′C′的體積為V,點P、Q分別在側(cè)棱AA′和CC′上,AP=C′Q,則四棱錐B-APQC的體積為
 
分析:四棱錐B-APQC的體積,底面面積是側(cè)面ACC′A′的一半,B到側(cè)面的距離是常數(shù),求解即可.
解答:解:由于四棱錐B-APQC的底面面積是側(cè)面ACC′A′的一半,不妨把P移到A′,Q移到C,
所求四棱錐B-APQC的體積,轉(zhuǎn)化為三棱錐A′-ABC體積,就是:
1
3
V

故答案為:
1
3
V
點評:本題考查棱錐的體積,考查轉(zhuǎn)化思想,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對角線交于點D,B1C1的中點為M,求證:CD⊥平面BDM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點,E為B1C的中點.
(1)求直線BE與A1C所成的角;
(2)在線段AA1中上是否存在點F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點.
(Ⅰ)求線段MN的長;
(Ⅱ)求證:MN∥平面ABB1A1;
(Ⅲ)線段CC1上是否存在點Q,使A1B⊥平面MNQ?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點.
(Ⅰ)證明:A1C1∥平面ACD;
(Ⅱ)求異面直線AC與A1D所成角的大小;
(Ⅲ)證明:直線A1D⊥平面ADC.

查看答案和解析>>

同步練習(xí)冊答案