如圖在三棱錐中,E?F是棱AD上互異的兩點(diǎn),G?H是棱BC上互異的兩點(diǎn),由圖可知

①AB與CD互為異面直線;②FH分別與DC?DB互為異面直線;
③EG與FH互為異面直線;④EG與AB互為異面直線.
其中敘述正確的是 (    )
A.①③B.②④C.①②④D.①②③④
A

試題分析:①AB與CD互為異面直線,正確;②當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),F(xiàn)H分別與DC?DB就不為異面直線;③EG與FH互為異面直線,正確;④當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),EG與AB不為異面直線.
點(diǎn)評:在做本題時(shí)要注意點(diǎn)的特殊性;尤其是E、F、G、H、為端點(diǎn)的情況。因此我們在做題時(shí)要考慮全面。屬于有中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點(diǎn).

(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為,求sin的最大值,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線,給出下列四個(gè)命題:
①若②若③若④若
其中正確的命題是(   )
A.①④B.②④C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E、F分別是AB、PD的中點(diǎn).

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求四面體PEFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,底面是直角梯形,,∠, ,平面⊥平面.

(1)求證:⊥平面;
(2)求平面和平面所成二面角(小于)的大;
(3)在棱上是否存在點(diǎn)使得∥平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,直三棱柱ABCA1B1C1中,ACBC=1,∠ACB=90°,AA1,DA1B1中點(diǎn).

(1)求證:C1DAB1 ;
(2)當(dāng)點(diǎn)FBB1上什么位置時(shí),會(huì)使得AB1⊥平面C1DF?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m、n表示不同直線,、表示不同平面,下列命題正確的是      (    )
A.若m‖,m‖ n,則n‖
B.若m,n,m‖,n‖,則
C.若, m,mn,則n‖
D.若, m,n‖m,n,則n‖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)在正四棱柱ABCD-A1B1C1D1中,E為CC1的中點(diǎn).

(1)求證:AC1∥平面BDE;(2)求異面直線A1E與BD所成角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

半徑為R的球放在墻角,同時(shí)與兩墻面和地面相切,那么球心到墻角頂點(diǎn)的距離為__    ____.

查看答案和解析>>

同步練習(xí)冊答案