【題目】如圖,在直角梯形中,,,平面平面,,分別在線段上,且,是等腰直角三角形.

1)若,求證:平面

2,是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請說明理由.

【答案】1)證明見解析;(2)存在,

【解析】

1)根據(jù)題意分析可得是等腰三角形,可得,進(jìn)而可得,進(jìn)而可得,即可得到結(jié)論;

2)根據(jù)題意,建立空間直角坐標(biāo)系,得,,,進(jìn)而可得平面的一個法向量,再利用,得方程解得即可得到結(jié)論.

1)連接,,

是等腰三角形,

在直角梯形中,,故為直角三角形,

中,,

,,中,

中,,故,平面,

平面平面

2)如圖,過,連接得四邊形為矩形.以為原點,,的方向為軸,軸的正方向建立如圖所示空間直角坐標(biāo)系,

,

設(shè)的中點為,連接,

,平面平面平面,平面平面

平面

是等腰直角三角形,,

,

設(shè)平面的一個法向量為,

,得

設(shè)與平面所成的角為,

,

化簡得,解得(舍去),

存在實數(shù),使得與平面所成的角的正弦值為,此時

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)前后,中國爆發(fā)新型冠狀病毒(SARS-Cov-2)如圖所示為124日至216日中國內(nèi)地(除湖北以外的)感染新型冠狀病毒新增人數(shù)的折線圖,為了預(yù)測分析數(shù)據(jù)的變化規(guī)律,建立了與時間變量的不同時間段的兩個線性回歸模型.根據(jù)124日至23日的數(shù)據(jù)(時間變量的值依次為12,3,45,6,78,910,11)建立模型①:;根據(jù)24日至216日的數(shù)據(jù)(時間變量的值依次為12,1314,1516,1718,1920,21,22,23,24)建立模型②:.

1

24

1

25

1

26

1

27

1

28

1

29

1

30

1

31

2

1

2

2

2

3

1

2

3

4

5

6

7

8

9

10

11

332

174

298

337

448

593

690

737

720

648

926

2

4

2

5

2

6

2

7

2

8

2

9

2

10

2

11

2

12

2

13

2

14

2

15

2

16

12

13

14

15

16

17

18

19

20

21

22

23

24

830

741

693

683

559

464

431

377

377

299

259

211

160

1)求出兩個回歸直線方程;(計算結(jié)果取整數(shù))

2)中國政府為了人民的生命安全,聽取專家意見,了解了病毒信息,并迅速做出一系列的隔離防護(hù)措施,但新冠狀病毒在世界范圍內(nèi)爆發(fā)時,某些歐美國家采取放任的態(tài)度,不治療、不隔離、不檢測,甚至不公布,請你用以上數(shù)據(jù)說明采取一系列措施的必要性,不采取措施的后果.

參考數(shù)據(jù):,,,

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy22px的焦點為F,過點F且斜率為1的直線l截得圓:x2+y2p2的弦長為2.

1)求拋物線C的方程;

2)若過點F作互相垂直的兩條直線l1、l2,l1與拋物線C交于AB兩點,l2與拋物線C交于D、E兩點,M、N分別為弦AB、DE的中點,求|MF||NF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}{bn}中,anbn+nbn=﹣an+1.

1)證明:數(shù)列{an+3bn}是等差數(shù)列.

2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數(shù)學(xué)家彼此獨立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:a2+b2)(c2+d2ac+bd2當(dāng)且僅當(dāng)adbc(即)時等號成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時x的值分別為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點,且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點的三個面上的正投影的面積之和( 。

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】干支歷法是上古文明的產(chǎn)物,又稱節(jié)氣歷或中國陽歷,是一部深奧的歷法.它是用60組各不相同的天干地支標(biāo)記年月日時的歷法.具體的算法如下:先用年份的尾數(shù)查出天干,如20133為癸;再用2013年除以12余數(shù)為99為巳.那么2013年就是癸巳年了,

天干

4

5

6

7

8

9

0

1

2

3

地支

4

5

6

7

8

9

10

11

12

1

2

3

2020年高三應(yīng)屆畢業(yè)生李東是壬午年出生,李東的父親比他大25歲.問李東的父親是哪一年出生(

A.甲子B.乙丑C.丁巳D.丙卯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在極坐標(biāo)系中曲線C的極坐標(biāo)方程為

1)求曲線C與極軸所在直線圍成圖形的面積;

2)設(shè)曲線C與曲線ρsinθ1交于A,B,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)討論時,的單調(diào)性、極值;

2)求證:在(1)的條件下,;

3)是否存在實數(shù)a,使的最小值是3,如果存在,求出a的值;若不存在,

請說明理由.

查看答案和解析>>

同步練習(xí)冊答案