【題目】下列命題:①函數(shù)f(x)=sin2x一cos2x的最小正周期是;
②在等比數(shù)列〔}中,若,則a3=士2;
③設(shè)函數(shù)f(x)=,若有意義,則
④平面四邊形ABCD中, ,則四邊形ABCD是
菱形. 其中所有的真命題是:( )
A. ①②④ B. ①④ C. ③④ D. ①②③
【答案】B
【解析】①函數(shù),則函數(shù)的周期,故①正確;②在等比數(shù)列中,若,則,則,又 , 同號, 不合題意,故②不正確;③設(shè)函數(shù),則函數(shù)的定義域?yàn)?/span>,若有意義,則,即,則且,故③錯(cuò)誤;④平面四邊形中, ,則,則四邊形為平行四邊形, ,則四邊形的對角線垂直,則四邊形是菱形,故④正確,故選B.
【 方法點(diǎn)睛】本題主要通過對多個(gè)命題真假的判斷,主要綜合考查三角函數(shù)的周期性、函數(shù)的定義域、等比數(shù)列的性質(zhì)以及平面向量線性元素與數(shù)量積公式,屬于難題.這種題型綜合性較強(qiáng),也是高考的命題熱點(diǎn),同學(xué)們往往因?yàn)槟骋惶幹R點(diǎn)掌握不好而導(dǎo)致“全盤皆輸”,因此做這類題目更要細(xì)心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點(diǎn)入手,然后集中精力突破較難的命題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有兩個(gè)不同的非零實(shí)根x1 , x2 .
(1)求證:x1+x2<﹣2;
(2)若實(shí)數(shù)λ滿足等式f(x1)+f(x2)+3a﹣λb=0,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù)中,表示相等函數(shù)的一組是( )
A.f(x)=1,g(x)=x0?
B.f(x)=|x|,g(t)=
C.f(x)= ,g(x)=x+1?
D.f(x)=lg(x+1)+lg(x﹣1),g(x)=lg(x2﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為: .
(1)把直線的參數(shù)方程化為極坐標(biāo)方程,把曲線的極坐標(biāo)方程化為普通方程;
(2)求直線與曲線交點(diǎn)的極坐標(biāo)(≥0,0≤).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線y=1+ 與直線kx﹣y﹣2k+5=0有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x﹣y+1=0,當(dāng)x= 時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若曲線與直線只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.
(1)若花店一天購進(jìn)枝玫瑰花,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.
(2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 | |||||||
頻數(shù) |
假設(shè)花店在這天內(nèi)每天購進(jìn)枝玫瑰花,求這天的日利潤(單位:元)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)有4個(gè)零點(diǎn),其圖象如下圖,和圖象吻合的函數(shù)解析式是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com