【題目】某花店每天以每枝元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.
(1)若花店一天購進(jìn)枝玫瑰花,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.
(2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 | |||||||
頻數(shù) |
假設(shè)花店在這天內(nèi)每天購進(jìn)枝玫瑰花,求這天的日利潤(單位:元)的平均數(shù).
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)賣出一枝可得利潤元,賣不出一枝可得賠本元,以花店一天購進(jìn)枝玫瑰花為分點(diǎn)即可建立分段函數(shù);(2)根據(jù)表格中的數(shù)據(jù),討論需求量得到這天的日利潤的平均數(shù),利用天的銷售量除以即可得到結(jié)論.
試題解析:(1)當(dāng)日需求量時(shí),利潤,
當(dāng)日需求量時(shí),利潤,
所以.
(2)當(dāng)時(shí),利潤;當(dāng)時(shí),利潤;
當(dāng)時(shí),利潤;當(dāng)時(shí),利潤;
當(dāng)時(shí),利潤;當(dāng)時(shí),利潤;
當(dāng)時(shí),利潤;
所以日利潤的平均數(shù)(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),關(guān)于的不等式的解集為,其中.
(1)求的值;
(2)令,若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍,并求出極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①函數(shù)f(x)=sin2x一cos2x的最小正周期是;
②在等比數(shù)列〔}中,若,則a3=士2;
③設(shè)函數(shù)f(x)=,若有意義,則
④平面四邊形ABCD中, ,則四邊形ABCD是
菱形. 其中所有的真命題是:( )
A. ①②④ B. ①④ C. ③④ D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,則導(dǎo)函數(shù)f′(x)是( )
A.僅有最小值的奇函數(shù)
B.既有最大值,又有最小值的偶函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值,又有最小值的奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax﹣1|﹣(a﹣1)x
(1)當(dāng)a= 時(shí),滿足不等式f(x)>1的x的取值范圍為;若函數(shù)f(x)的圖象與x軸沒有交點(diǎn),則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)的導(dǎo)函數(shù)為.
⑴ 若直線與曲線恒相切于同一定點(diǎn),求的方程;
⑵ 若,求證:當(dāng)時(shí), 恒成立;
⑶ 若當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n﹣m的最小值為 ,則實(shí)數(shù)a的值為( )
A.
B. 或
C.
D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,下列條件:
①∠B+∠DAC=90°,
②∠B=∠DAC,
③,
④AB2=BD·BC.
其中一定能夠判定△ABC是直角三角形的共有( )
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com