【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(x)的解析式,并畫出的f(x)圖象;
(2)設(shè)g(x)=f(x)﹣k,利用圖象討論:當(dāng)實(shí)數(shù)k為何值時(shí),函數(shù)g(x)有一個(gè)零點(diǎn)?二個(gè)零點(diǎn)?三個(gè)零點(diǎn)?
【答案】
(1)解:當(dāng)x≥0時(shí),f(x)=x2﹣2x.
設(shè)x<0可得﹣x>0,則f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x
∵函數(shù)f(x)為奇函數(shù),則f(x)=﹣f(﹣x)=﹣x2﹣2x
∴ 函數(shù)的圖象如圖所示
(2)解:由g(x)=f(x)﹣k=0可得f(x)=k
結(jié)合函數(shù)的圖象可知
①當(dāng)k<﹣1或k>1時(shí),y=k與y=f(x)的圖象有1個(gè)交點(diǎn),即g(x)=f(x)﹣k有1個(gè)零點(diǎn)
②當(dāng)k=﹣1或k=1時(shí),y=k與y=f(x)有2個(gè)交點(diǎn),即g(x)=f(x)﹣k有2個(gè)零點(diǎn)
③當(dāng)﹣1<k<1時(shí),y=k與y=f(x)有3個(gè)交點(diǎn),即g(x)=f(x)﹣k有3個(gè)零點(diǎn)
【解析】(1)先設(shè)x<0可得﹣x>0,則f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,由函數(shù)f(x)為奇函數(shù)可得f(x)=﹣f(﹣x),可求,結(jié)合二次函數(shù)的圖象可作出f(x)的圖象;(2)由g(x)=f(x)﹣k=0可得f(x)=k,結(jié)合函數(shù)的圖象可,要求g(x)=f(x)﹣k的零點(diǎn)個(gè)數(shù),只要結(jié)合函數(shù)的圖象,判斷y=f(x)與y=k的交點(diǎn)個(gè)數(shù)
【考點(diǎn)精析】利用函數(shù)奇偶性的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)與雙曲線: 的右焦點(diǎn)的連線交于第一象限的點(diǎn),若在點(diǎn)處的切線平行于的一條漸近線,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列函數(shù):①f(x)= ,g(x)=x+1;②f(x)=|x|,g(x)= ;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函數(shù)的是( )
A.①②③
B.①③
C.②③
D.②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)計(jì)劃銷售某種產(chǎn)品,現(xiàn)邀請(qǐng)生產(chǎn)該產(chǎn)品的甲、乙兩個(gè)廠家進(jìn)場(chǎng)試銷10天,兩個(gè)廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個(gè)廠家10天的試銷情況莖葉圖如下:
(Ⅰ)現(xiàn)從廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問題:
(。┯浺覐S家的日返利額為(單位:元),求的分布列和數(shù)學(xué)期望;
(ⅱ)商場(chǎng)擬在甲、乙兩個(gè)廠家中選擇一家長期銷售,如果僅從日返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為商場(chǎng)做出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則f(x)>0的解集為 , xf(x)<0的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個(gè)結(jié)論,其中正確的個(gè)數(shù)為( 。
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,平均數(shù)與方差均沒有變化;
②在線性回歸分析中,相關(guān)系數(shù)r越小,表明兩個(gè)變量相關(guān)性越弱;
③某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為15人.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +x,x∈[3,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并利用單調(diào)性定義證明;
(2)求函數(shù)f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b)滿足f(x0)= ,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個(gè)均值點(diǎn).若函數(shù)f(x)=﹣x2+mx+1是[﹣1,1]上的平均值函數(shù),則實(shí)數(shù)m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求過點(diǎn)且與曲線相切的直線方程;
(Ⅱ)設(shè),其中為非零實(shí)數(shù),若有兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com