【題目】給出下列函數(shù):①f(x)= ,g(x)=x+1;②f(x)=|x|,g(x)= ;③f(x)=x2﹣2x﹣1,g(t)=t2﹣2t﹣1.其中,是同一函數(shù)的是( )
A.①②③
B.①③
C.②③
D.②
【答案】C
【解析】解:對于①,函數(shù)f(x)= =x+1(x≠1),與函數(shù)g(x)=x+1(x∈R)的定義域不同,不是同一函數(shù);
對于②,函數(shù)f(x)=|x|(x∈R),與g(x)= =|x|(x∈R)的定義域相同,對應(yīng)關(guān)系也相同,是同一函數(shù);
對于③,函數(shù)f(x)=x2﹣2x﹣1(x∈R),與g(t)=t2﹣2t﹣1(t∈R)的定義域相同,對應(yīng)關(guān)系也相同,是同一函數(shù).
以上,是同一函數(shù)的是②③.
故選:C.
【考點精析】通過靈活運用判斷兩個函數(shù)是否為同一函數(shù),掌握只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為,將曲線:(為參數(shù)),經(jīng)過伸縮變換后得到曲線.
(1)求曲線的參數(shù)方程;
(2)若點的曲線上運動,試求出到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017錦州質(zhì)量檢測(二)】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 為的中點, 是棱上的點, , .
(Ⅰ)求證:平面平面;
(Ⅱ)若三棱錐的體積是四棱錐體積的,設(shè),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.
(1)若{x|f(x)g(x)=0}={1,2},求實數(shù)a的值;
(2)若{x|f(x)<0或g(x)<0}=R,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,棱長為1 ,點為線段上的動點(包含線段端點),則下列結(jié)論正確的______.
①當時, 平面;
②當時, 平面;
③的最大值為;
④的最小值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0)在其定義域上為奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2﹣2x.
(1)求f(x)的解析式,并畫出的f(x)圖象;
(2)設(shè)g(x)=f(x)﹣k,利用圖象討論:當實數(shù)k為何值時,函數(shù)g(x)有一個零點?二個零點?三個零點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個函數(shù):①y=3﹣x;② ;③y=x2+2x﹣10;④ ,其中值域為R的函數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com