16.已知a=log30.2,b=30.2,c=0.30.2,則a,b,c三者的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

分析 利用對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:a=log30.2<0,b=30.2>1,c=0.30.2∈(0,1),
∴a<c<b.
故選:C.

點評 本題考查了對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.方程$sinx=\frac{1}{2}$的解為(  )
A.$x=kπ+{(-1)}^{k}•\frac{π}{6}$,k∈ZB.$x=2kπ{({-1})^k}•\frac{π}{6}$,k∈Z*
C.$x=kπ+{({-1})^{k+1}}•\frac{π}{6}$,k∈ZD.$x=2kπ+{({-1})^{k+1}}•\frac{π}{6}$,k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列函數(shù)中,在R上的單調(diào)遞增的是( 。
A.y=|x|B.y=x3C.y=log2xD.$y={({\frac{1}{2}})^x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.用半徑為r的半圓形紙片可以卷成一個高為$\sqrt{3}$的圓錐筒,則r的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在正方體ABCD-A1B1C1D1中,
(1)求證直線BD與平面A1B1C1D1平行;
(2)求證:面BB1DD1⊥面AB1C
(3)求二面角A-B1C-C1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.對于函數(shù)f(x),定義域為D,若存在x0∈D使f(x0)=x0,則稱(x0,x0)為f(x)的圖象上的不動點,由此,函數(shù)f(x)=4x+2x-2的零點差絕對值不超過0.25,則滿足條件的g(x)有①②.
①g(x)=4x-1;②$g(x)={({x-\frac{1}{2}})^2}$;③g(x)=ex-1;④$g(x)=ln({\frac{π}{x}-3})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設(shè)函數(shù)$f(x)=2x+\frac{1}{x}-1(x>0)$,則f(x)( 。
A.有最小值B.有最大值C.是增函數(shù)D.是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.己知數(shù)列{an}與{bn}的前n項和分別是Sn和Tn,已知S2017=3,和T2017=673.記Cn=anTn+bnSn-anbn(n∈N*),那么數(shù)列{Cn}的前2017項和$\underset{\stackrel{2017}{∑}}{i=1}$Ci=2019.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=cosx•sin$({x+\frac{π}{3}})$-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)單調(diào)增區(qū)間;
(3)求f(x)對稱中心.

查看答案和解析>>

同步練習冊答案