【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
【答案】,
【解析】
試題分析:(Ⅰ)由橢圓方程可得橢圓的右焦點(diǎn)坐標(biāo)將其代入直線方程即可求得的值. (Ⅱ)將直線方程與橢圓方程聯(lián)立,消去可得關(guān)于的一元二次方程,從而可得兩根之積兩根之和.根據(jù)重心坐標(biāo)公式分別求得點(diǎn)的坐標(biāo),由題意可知,即.根據(jù)數(shù)量積公式可求得范圍.
試題解析:解:(Ⅰ)∵直線:經(jīng)過,
,得.
又,.
故直線的方程為.
(Ⅱ)設(shè),
由消去得,
∴.
由,得,
由于,故為的中點(diǎn).
由分別為的重心,可知,
設(shè)是的中點(diǎn),則,
∵原點(diǎn)在以線段為直徑的圓內(nèi),.
而,
∴,即.
又且,.的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面上的一列點(diǎn)簡記為,若由構(gòu)成的數(shù)列滿足,(其中是與軸正方向相同的單位向量),則稱為“點(diǎn)列”.
(1)試判斷:,...是否為“點(diǎn)列”?并說明理由.
(2)若為“點(diǎn)列”,且點(diǎn)在點(diǎn)的右上方.任取其中連續(xù)三點(diǎn),判斷的形狀(銳角,直角,鈍角三角形),并證明.
(3)若為“點(diǎn)列”,正整數(shù)滿足:,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游戲廠商對(duì)新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:
①3小時(shí)以內(nèi)(含3小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值單位:與游玩時(shí)間小時(shí))滿足關(guān)系式:;
②3到5小時(shí)(含5小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為即累積經(jīng)驗(yàn)值不變);
③超過5小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為50.
⑴當(dāng)時(shí),寫出累積經(jīng)驗(yàn)值E與游玩時(shí)間t的函數(shù)關(guān)系式,并求出游玩6小時(shí)的累積經(jīng)驗(yàn)值;
⑵該游戲廠商把累積經(jīng)驗(yàn)值E與游玩時(shí)間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中點(diǎn),E是BD的中點(diǎn).
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由非負(fù)整數(shù)組成的無窮數(shù)列,對(duì)每一個(gè)正整數(shù),該數(shù)列前項(xiàng)的最大值記為,第項(xiàng)之后各項(xiàng)的最小值記為,記.
(1)若數(shù)列的通項(xiàng)公式為,求數(shù)列的通項(xiàng)公式;
(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;
(3)若對(duì)任意恒成立,證明:數(shù)列的通項(xiàng)公式為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線上一點(diǎn),經(jīng)過點(diǎn)的直線與拋物線交于、兩點(diǎn)(不同于點(diǎn)),直線、分別交直線于點(diǎn)、.
(1)求拋物線方程及其焦點(diǎn)坐標(biāo);
(2)求證:以為直徑的圓恰好經(jīng)過原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行購物抽獎(jiǎng)活動(dòng),抽獎(jiǎng)箱中放有編號(hào)分別為的五個(gè)小球.小球除編號(hào)不同外,其余均相同.活動(dòng)規(guī)則如下:從抽獎(jiǎng)箱中隨機(jī)抽取一球,若抽到的小球編號(hào)為,則獲得獎(jiǎng)金元;若抽到的小球編號(hào)為偶數(shù),則獲得獎(jiǎng)金元;若抽到其余編號(hào)的小球,則不中獎(jiǎng).現(xiàn)某顧客依次有放回的抽獎(jiǎng)兩次.
(1)求該顧客兩次抽獎(jiǎng)后都沒有中獎(jiǎng)的概率;
(2)求該顧客兩次抽獎(jiǎng)后獲得獎(jiǎng)金之和為元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com