精英家教網(wǎng)如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(Ⅰ)證明:D1E⊥A1D;
(Ⅱ)當E為AB的中點時,求異面直線AC與D1E所成角的余弦值;
(Ⅲ)AE等于何值時,二面角D1-EC-D的大小為
π4
分析:(I)以D為坐標原點,直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標系,設AE=x,則我們可以確定長方體ABCD-A1B1C1D1中,各點的坐標,求出直線D1E和直線A1D的方向向量后,判斷他們的數(shù)量積為0,即可得到D1E⊥A1D;
(Ⅱ)由E為AB的中點時,則我們可以求出滿足條件的E點的坐標,進而求出直線AC與D1E的方向向量,代入向量夾角公式,即可得到答案.
(III)若二面角D1-EC-D的大小為
π
4
,則平面D1EC的法向量
n
與平面ECD的法向量
DD1
的夾角大小為
π
4
,求出平面D1EC的法向量
n
,構造關于x的方程,解方程即可得到滿足條件的AE的值.
解答:解:以D為坐標原點,直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標系,
設AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A=(1,0,0),C(0,2,0).…(2分)
(Ⅰ)因為
DA1
=(1,0,1),
D1E
=(1,x,-1)
DA1
D1E
=1+0-1=0,所以D1E⊥A1D;
(Ⅱ)因為E為AB中點,則E(1,1,0),
從而
D1E
=(1,1,-1),
AC
=(-1,2,0),
設AC與D1E所成的角為θ
cosθ=
|
AC
D1E
|
|
AC
||
D1E
|
=
|-1+2+0|
5
3
=
15
15
…(9分)
(Ⅲ)設平面D1EC的法向量為
n
=(a,b,c),
CE
=(1,x-2,0),
D1C
=(0,2,-1),
DD1
=(0,0,1)
n
D1C
=0
 
n
CE
=0
,有
2b-c=0
a+b(x-2)=0
,
令b=1,從而c=2,a=2-x
n
=(2-x,1,2),…..(12分)
由題意,cos
π
4
=
n
DD1
|
n
|•|
DD1
|
=
2
(x-2)2+5
=
2
2

∴x=2+
3
(不合題意,舍去),或x=2-
3

∴當AE=2-
3
時,二面角D1-EC-D的大小為
π
4
點評:本題考查的知識點是向量語言表述線線的垂直、平行關系,用空間向量求直線間的夾角、距離,用空間向量求平面間的夾角,其中建立適當?shù)目臻g坐標系,求出各頂點的坐標及相關直線的方向向量及相關平面的法向量的坐標,將空間平行、垂直及夾角問題轉化為向量的夾角問題是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個數(shù)為:
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,定義八個頂點都在某圓柱的底面圓周上的長方體叫做圓柱的內(nèi)接長方體,圓柱也叫長方體的外接圓柱.設長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c(其中a>b>c),那么該長方體的外接圓柱側面積的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年四川省成都市高二3月月考數(shù)學試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1EA1D;

(2)當EAB的中點時,求點E到面ACD1的距離;

(3)AE等于何值時,二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =,AA1 =,M為側棱CC1上一點,AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大。

   (Ⅲ)求點C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案