2.若集合A={x|-1≤2x+1≤3},B=$\{x|\frac{x-2}{x}≤0\}$,則A∪B={x|-1≤x≤2}.

分析 化簡集合A,B,再由并集的含義可得.

解答 解:集合A={x|-1≤2x+1≤3}={x|-1≤x≤1},
B=$\{x|\frac{x-2}{x}≤0\}$={x|0<x≤2},
則A∪B={x|-1≤x≤2}.
故答案為:{x|-1≤x≤2}.

點(diǎn)評 本題考查集合的補(bǔ)集運(yùn)算,同時考查分式不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知正三棱柱ABC-A1B1C1的底面邊長為4cm,高為10cm,則一質(zhì)點(diǎn)自點(diǎn)A出發(fā),沿著三棱柱的側(cè)面,繞行兩周到達(dá)點(diǎn)A1的最短路線的長為( 。
A.16cmB.12$\sqrt{3}$cmC.24$\sqrt{3}$cmD.26cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)f(x)為定義在R上的奇函數(shù),其圖象關(guān)于x=1對稱,且f(1)=1,則f(-1)+f(8)=( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知等比數(shù)列{an}的前6項(xiàng)和S6=21,且4a1、$\frac{3}{2}$a2、a2成等差數(shù)列,則an=$\frac{{{2^{n-1}}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=$\sqrt{5}$.
(1)求證:PD⊥平面PAB;
(2)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在等差數(shù)列{an}中,已知a5=10,a12=31,則公差d=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,點(diǎn)列{An},{Bn}分別在某個銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+2,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+2,n∈N*(P≠Q(mào)表示P與Q不重合).若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{dn}是等差數(shù)列B.{dn2}是等差數(shù)列C.{Sn}是等差數(shù)列D.{Sn2}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐A-BCD中,AB=CD=2$\sqrt{13}$,BC=AD=$\sqrt{41}$,AC=BD=$\sqrt{61}$,則三棱錐A-BCD的外接球的表面積為77π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.雙曲線$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的漸近線方程為( 。
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

同步練習(xí)冊答案