14.曲線y=ex在點(2,e2)處的切線與坐標軸所圍三角形的面積為( 。
A.$\frac{e^2}{2}$B.2e2C.e2D.$\frac{9}{4}{e^2}$

分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,由點斜式方程可得切線的方程,令x=0,y=0,可得切線與坐標軸的交點,由三角形的面積公式,計算即可得到所求值.

解答 解:y=ex的導(dǎo)數(shù)為y′=ex,
可得曲線y=ex在點(2,e2)處的切線斜率為k=e2
即有曲線y=ex在點(2,e2)處的切線方程為y-e2=e2(x-2),
令x=0,可得y=-e2,
令y=0,可得x=1,
則切線與坐標軸所圍三角形的面積為$\frac{1}{2}$×1×e2=$\frac{{e}^{2}}{2}$.
故選:A.

點評 本題考查導(dǎo)數(shù)的運用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,以及三角形的面積的計算,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C極坐標方程:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,點P極坐標為$({2\sqrt{3},\frac{π}{6}})$,直線l過點P,且傾斜角為$\frac{π}{3}$.
(1)求曲線C的直角坐標方程及直線l參數(shù)方程;
(2)若直線l與曲線C交于A,B兩點,求$|{\frac{1}{{|{PA}|}}-\frac{1}{{|{PB}|}}}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\left\{\begin{array}{l}{cos(π{x}^{2}),-1<x<0}\\{{e}^{x}-1,x≥0}\end{array}\right.$,若f(a)=0,則a的所有可能值組成的集合為(  )
A.{0}B.{0,$\frac{\sqrt{2}}{2}$}C.{0,-$\frac{\sqrt{2}}{2}$}D.{-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,∠ABC=$\frac{π}{3}$,邊BC在平面α內(nèi),頂點A在平面α外,直線AB與平面α所成角為θ.若平面ABC與平面α所成的二面角為$\frac{π}{3}$,則sinθ=$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若a>b>0,0<c<1,則( 。
A.logac<logbcB.logca<logcbC.c<bcD.a>cb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“方程$\frac{{x}^{2}}{m}$$+\frac{{y}^{2}}{6-2m}$=1表示的曲線是焦點在y軸上的橢圓”的必要不充分條件是(  )
A.1<m<2B.0<m<2C.m<2D.m≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點F為拋物線C:y2=2px(p>0)的焦點,M(4,t)(t>0)為拋物線C上的點,且|MF|=5,線段MF的中點為N,點T為C上的一個動點,則|TF|+|TN|的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.等差數(shù)列{an}中,a2+a3=4,a4+a6=6.
(1)求數(shù)列{an}的通項公式;   
(2)求數(shù)列{an}的前n項和sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{AB}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則∠ABC=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊答案