【題目】等邊的邊長為3,點分別為上的點,且滿足(如圖1),將沿折起到的位置,使二面角成直二面角,連接, (如圖2)
(1)求證: 平面;
(2)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長;若不存在,請說明理由.
【答案】(1)見解析;(2)
【解析】試題分析:(1) 由 ,等邊三角形的邊長為3.所以可得,所以在三角形ADE翻折過程中始終成立.又由于成直二面角.由平面與平面垂直的性質(zhì)定理可得平面.
(2)由于平面 平面BCED.假設(shè)存在點P,過點P作BD的垂線,垂足為H.則為所求的角.假設(shè)BP的長為x,根據(jù)題意分別求出相應(yīng)的線段.即可得結(jié)論.
(1) 因為等邊△的邊長為3,且 ,
所以, .
在△中, ,
由余弦定理得.
因為,
所以. (4分)
折疊后有
因為二面角是直二面角,所以平面 平面
又平面 平面 ,平面, ,
所以平面(6分)
(2)由(1)的證明,可知,平面.
以為坐標原點,以射線、、分別為軸、軸、軸的正半軸,建立空間直角坐標系如圖
設(shè) ,
則, ,
所以, ,
所以(8分)
因為平面,
所以平面的一個法向量為
因為直線與平面所成的角為,
所以
, (10分)
解得
即,滿足,符合題意
所以在線段上存在點,使直線與平面所成的角為,此時(12分)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值為b,當x∈[1,+∞)時,f(x)≥b恒成立,則a的取值范圍( )
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別是A,B,C的對邊,(2a﹣c)cosB﹣bcosC=0.
(1)求角B的大。
(2)設(shè)函數(shù)f(x)=2sinxcosxcosB﹣ cos2x,求函數(shù)f(x)的最大值及當f(x)取得最大值時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若向量 = , =(sinωx,0),其中ω>0,記函數(shù)f(x)=( + ) ﹣ .若函數(shù)f(x)的圖象與直線y=m(m為常數(shù))相切,并且切點的橫坐標依次成公差是π的等差數(shù)列.
(Ⅰ)求f(x)的表達式及m的值;
(Ⅱ)將f(x)的圖象向左平移 個單位,再將得到的圖象上各點的縱坐標變?yōu)樵瓉淼?倍(橫坐標不變)后得到y(tǒng)=g(x)的圖象,求y=g(x)在 上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知曲線C的參數(shù)方程為 (α為參數(shù)).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ﹣ )=2
(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在公差不為0的等差數(shù)列{an}中,a1+a5=ap+aq , 記 + 的最小值為m,若數(shù)列{bn}滿足bn>0,b1= m,bn+1是1與 的等比中項,若bn 對任意n∈N*恒成立,則s的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有4個不同的球,4個不同的盒子,把球全部放入盒子內(nèi).
(1)共有幾種放法?
(2)恰有1個空盒,有幾種放法?
(3)恰有2個盒子不放球,有幾種放法?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com