2.某校高二年級(jí)共有24個(gè)班,為了解該年級(jí)學(xué)生對(duì)數(shù)學(xué)的喜愛(ài)程度,將每個(gè)班編號(hào),依次為1到24,現(xiàn)用系統(tǒng)抽樣方法抽取4個(gè)班進(jìn)行調(diào)查,若抽到的編號(hào)之和為52,則抽取的最小編號(hào)是(  )
A.2B.3C.4D.5

分析 求出系統(tǒng)抽樣的抽取間隔,設(shè)抽到的最小編號(hào)為x,建立方程即可.

解答 解:24個(gè)班分為4組,抽取間隔為24÷4=6.
設(shè)抽到的最小編號(hào)為x,得:4x+$\frac{4×3}{2}×6$=52,
解得:x=4,
故選:C.

點(diǎn)評(píng) 本題考查了系統(tǒng)抽樣方法,熟練掌握系統(tǒng)抽樣的特征是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若?x0∈(0,+∞),不等式ax-lnx<0成立,則a的取值范圍是(  )
A.(-∞,$\frac{1}{e}$)B.(-∞,0)C.(-∞,e)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知a∈R,直線l1:(2a+1)x+2y-a+2=0與直線l2:2x-3ay-3a-5=0垂直.
(1)求a的值;
(2)求以l1,l2的交點(diǎn)為圓心,且與直線3x-4y+9=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知數(shù)列{an}滿足a1=$\frac{1}{3}$,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N*),則$\frac{{a}_{3}+{a}_{1005}}{{a}_{3}{a}_{1005}}$=( 。
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某校從高一年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們期中考試的數(shù)學(xué)成績(jī)(均為整數(shù))分成六段:[40,50),[50,60),…[90,100),后得到頻率分布直方圖(如圖所示)
(1)求分?jǐn)?shù)在[70,80)中的人數(shù);
(2)若用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5人,該5人中成績(jī)?cè)赱40,50)的有幾人;
(3)在(2)中抽取的5人中,隨機(jī)抽取2人,求分?jǐn)?shù)在[40,50)和[50,60)各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$\overrightarrow{a}$=(sin(2x-$\frac{π}{3}$),1),$\overrightarrow$=($\sqrt{3}$,-1),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的周期及單調(diào)減區(qū)間.
(2)已知x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xOy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,圓C的直角坐標(biāo)系方程為x2+y2+2x-2y=0,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+t}\\{y=t}\end{array}\right.$(t為參數(shù)),射線OM的極坐標(biāo)方程為θ=$\frac{3π}{4}$
(Ⅰ)求圓C和直線l的極坐標(biāo)方程
(Ⅱ)已知射線OM與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=1,CC1=2,則異面直線A1B與AC所成角的余弦值是$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知|x+2|+|6-x|≥k恒成立
(1)求實(shí)數(shù)k的最大值;
(2)若實(shí)數(shù)k的最大值為n,正數(shù)a,b滿足$\frac{8}{5a+b}+\frac{2}{2a+3b}=n$,求7a+4b的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案