18.若?x0∈(0,+∞),不等式ax-lnx<0成立,則a的取值范圍是( 。
A.(-∞,$\frac{1}{e}$)B.(-∞,0)C.(-∞,e)D.(-∞,1)

分析 若?x0∈(0,+∞),不等式ax-lnx<0成立,則?x0∈(0,+∞),不等式a<$\frac{lnx}{x}$成立,令f(x)=$\frac{lnx}{x}$,則a<f(x)max,利用導數(shù)法,求出函數(shù)的最大值,可得答案.

解答 解:若?x0∈(0,+∞),不等式ax-lnx<0成立,
則?x0∈(0,+∞),不等式a<$\frac{lnx}{x}$成立,
令f(x)=$\frac{lnx}{x}$,則a<f(x)max,
∵f′(x)=$\frac{1-lnx}{{x}^{2}}$,
則x∈(0,e)時,f′(x)>0,f(x)=$\frac{lnx}{x}$為增函數(shù),
x∈(e,+∞)時,f′(x)<0,f(x)=$\frac{lnx}{x}$為減函數(shù),
故x=e時,f(x)max=$\frac{1}{e}$,
故a的取值范圍是(-∞,$\frac{1}{e}$).
故選:A.

點評 本題考查了存在性問題,注意運用參數(shù)分離,利用導數(shù)求函數(shù)的最值是解題的關鍵,考查運算能力,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={-1,0,1,3,4,5},B={x|x2-4x+3≤0},則A∩B=(  )
A.{1}B.{3}C.{1,3}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知點A(-1,2),B(2,3),直線l:kx-y-k+1=0與線段AB相交,則實數(shù)k的取值范圍是(  )
A.-$\frac{1}{2}$≤k≤2B.k≤-$\frac{1}{2}$或k≥2C.-2≤k≤$\frac{1}{2}$D.k≤-2或k≥$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在直角梯形PBCD中,PB∥DC,DC⊥BC,點A在邊PB上,AD∥BC,PB=3BC=6,現(xiàn)沿AD將△PAD折起,使平面PAD⊥平面ABCD.
(Ⅰ)當CD=BC時,證明:直線BD⊥平面PAC;
(Ⅱ)當三棱錐P-ABD的體積取得最大值時,求平面PBD與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設α,β,γ表示平面,l表示直線,則下列命題中,錯誤的是(  )
A.如果α⊥β,那么α內(nèi)一定存在直線平行于β
B.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
C.如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
D.如果α⊥β,那么α內(nèi)所有直線都垂直于β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題p:?x∈R,x2-2x-1≥0,則¬p是( 。
A.?x∈R,x2-2x-1≥0B.?x∈R,x2-2x-1<0C.?x∈R,x2-2x-1<0D.?x∈R,x2-2x-1≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=x•cosx,則$f'({\frac{π}{2}})$的值為( 。
A.$-\frac{π}{2}$B.$\frac{π}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖,正六邊形ABCDEF中,$\overrightarrow{BC}$$+\overrightarrow{DE}$$+\overrightarrow{AF}$等于( 。
A.$\overrightarrow{EB}$B.$\overrightarrow{BE}$C.$\overrightarrow{AD}$D.$\overrightarrow{CF}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某校高二年級共有24個班,為了解該年級學生對數(shù)學的喜愛程度,將每個班編號,依次為1到24,現(xiàn)用系統(tǒng)抽樣方法抽取4個班進行調(diào)查,若抽到的編號之和為52,則抽取的最小編號是( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案