是世界上最古老的數(shù)學(xué)著作之一.書中有這樣的一道題目:把個面包分給個人.使每人所得成等差數(shù)列.且使較大的三份之和的是較小的兩份之和.則最小的份為( )A. B. C. D. ">

萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有這樣的一道題目:把個面包分給個人,使每人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的份為( )

A. B. C. D.

 

A

【解析】

試題分析:由題意,設(shè)這5份分別為,則有,,故,,則最小的一份

考點(diǎn):等差數(shù)列的性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)平面向量,其中記“使得成立的”為事件A,則事件A發(fā)生的概率為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省七市(州)高三年級聯(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

設(shè),則___ ____.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省七市(州)高三年級聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

將長度為的線段分成段,每段長度均為正整數(shù),并要求這段中的任意三段都不能構(gòu)成三角形.例如,當(dāng)時,只可以分為長度分別為1,1,2的三段,此時的最大值為3;當(dāng)時,可以分為長度分別為1,2,4的三段或長度分別為1,1,2,3的四段,此時的最大值為4.則:

(1)當(dāng)時,的最大值為________;

(2)當(dāng)時,的最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省七市(州)高三年級聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)

被稱為狄利克雷函數(shù),其中為實(shí)數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個命題:

; ②函數(shù)是偶函數(shù);

③任取一個不為零的有理數(shù),對任意的恒成立;

④存在三個點(diǎn),使得為等邊三角形.

其中真命題的個數(shù)是( )

A.1 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三高考模擬沖刺卷(提優(yōu)卷)(二)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)對于函數(shù)中的任意實(shí)數(shù)x,在上總存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍

(2)設(shè)函數(shù),當(dāng)在區(qū)間內(nèi)變化時,

(1)求函數(shù)的取值范圍;

(2)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三高考模擬沖刺卷(提優(yōu)卷)(二)理科數(shù)學(xué)試卷(解析版) 題型:填空題

若實(shí)數(shù)x,y滿足:,則的最小值是.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三高考模擬沖刺卷(提優(yōu)卷)(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平面內(nèi),,,P為平面外一個動點(diǎn),且PC=

(1)問當(dāng)PA的長為多少時,

(2)當(dāng)的面積取得最大值時,求直線BC與平面PAB所成角的大小

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三高考模擬沖刺卷(提優(yōu)卷)(三)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知集合A={x|4≤≤16},B=[a,b],若A⊆B,則實(shí)數(shù)a-b的取值范圍是( )

A. (-∞,-2]  B. C. (-∞,2]  D.

 

查看答案和解析>>

同步練習(xí)冊答案