【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為梯形,AB//CD,∠BAD=60°,CD=1,AD=2,AB=4,點G在線段AB上,AG=3GB,AA1=1
(1)證明:D1G/平面BB1C1C,
(2)求二面角A1-D1G-A的余弦值.
【答案】(1)證明見詳解;(2)
【解析】
(1)在平面中找到與直線D1G平行的直線,再由線線平行推證線面平行即可;
(2)建立空間直角坐標系,處理二面角.
(1)連接,在四邊形中:
因為,且//GB
故四邊形為平行四邊形,故可得//,
又平面BB1C1C,平面BB1C1C
故//平面BB1C1C.即證.
(2)因為四棱柱ABCD-A1B1C1D1為直四棱柱,故底面ABCD
故以平面ABCD內垂直于DC的直線為軸
以分別為軸,建立空間直角坐標系,如圖所示:
故可得:
設平面的法向量為
則,即
取
設平面的法向量為
則,即
取
又因為二面角A1-D1G-A是銳二面角,設其平面角為
故,即為所求二面角A1-D1G-A夾角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,長軸長為4,且過點.
(1)求橢圓C的方程;
(2)過的直線l交橢圓C于兩點,過A作x軸的垂線交橢圓C與另一點Q(Q不與重合).設的外心為G,求證為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】足球是世界普及率最高的運動,我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學校的發(fā)展狀況,社會調查小組得到如下統(tǒng)計數(shù)據(jù):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學校y(百個) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計算y與x的相關系數(shù)r,并說明y與x的線性相關性強弱.
(已知:,則認為y與x線性相關性很強;,則認為y與x線性相關性一般;,則認為y與x線性相關性較):
(2)求y關于x的線性回歸方程,并預測A地區(qū)2020年足球特色學校的個數(shù)(精確到個).
參考公式和數(shù)據(jù):,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是一塊平行四邊形園地,經(jīng)測量,.擬過線段上一點 設計一條直路(點在四邊形的邊上,不計直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(單位:m).
(1)當點與點重合時,試確定點的位置;
(2)求關于的函數(shù)關系式;
(3)試確定點的位置,使直路的長度最短.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸的建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程;
(2)若點與點分別為曲線動點,求的最小值,并求此時的點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的方程為.
(1)求曲線的直角坐標方程;
(2)設曲線與直線交于點,點的坐標為(3,1),求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點P,Q分別為A1B1,BC的中點.
(1)求異面直線BP與AC1所成角的余弦值;
(2)求直線CC1與平面AQC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖(1),函數(shù)的圖象與x軸圍成一個封閉區(qū)域A(陰影部分),將區(qū)域A(陰影部分)沿z軸的正方向上移6個單位,得到一幾何體.現(xiàn)有一個與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區(qū)域A(陰影部分)的面積相等,則此柱體的體積為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com