9.等差數(shù)列{an}的首項為a,公差為1,數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{{a}_{n}+1}$.若對任意n∈N*,bn≤b6,則實數(shù)a的取值范圍是(  )
A.(-8,-6)B.(-7,-6)C.(-6,-5)D.(6,7)

分析 由等差數(shù)列的通項公式,求得數(shù)列{an}的通項,進而求得bn,再由函數(shù)的性質(zhì)求得.

解答 解:∵{an}是首項為a,公差為1的等差數(shù)列,
∴an=n+a-1.
∴bn=$\frac{{a}_{n}}{{a}_{n}+1}$=$1-\frac{1}{n+a}$.
又∵對任意的n∈N*,都有bn≤b6成立,可知$\frac{1}{6+a}≤\frac{1}{n+a}$,
則必有7+a-1<0且8+a-1>0,
∴-7<a<-6;
故選:B.

點評 本題主要考查等差數(shù)列的通項公式,用函數(shù)處理數(shù)列思想的方法求解,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.在扇形AOB中,∠AOB=2,且弦AB=2,則扇形AOB的面積為( 。
A.$\frac{2}{sin2}$B.$\frac{1}{si{n}^{2}1}$C.$\frac{1}{2si{n}^{2}2}$D.2sin1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命題“?t∈R,A∩B=∅”是真命題,則實數(shù)a的取值范圍是(  )
A.(-∞,0)∪($\frac{4}{3}$,+∞)B.(0,$\frac{4}{3}$]C.[0,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知{an}是等差數(shù)列,a1=-26,a8+a13=5,當{an}的前n項和Sn取最小值時,n等于(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.關(guān)于x的不等式x2-ax+b<0的解集為{x|2<x<3}.
(Ⅰ)求a+b;
(Ⅱ)若不等式-x2+bx+c>0的解集為空集,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知a>1,$x={log_a}\sqrt{2}+\frac{1}{2}{log_a}3$,$y=\frac{1}{2}{log_a}5$,$z={log_a}\sqrt{21}-{log_a}\sqrt{3}$,則( 。
A.x>y>zB.z>y>xC.y>x>zD.z>x>y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知$f(x)={log_{0.5}}({x^2}-mx-m)$.
(1)若函數(shù)f(x)的定義域為R,求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間$(-2,-\frac{1}{2})$上是遞增的,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知p:“直線x+y-m=0與圓(x-1)2+y2=1相交”;q:“方程mx2-2x+1=0有實數(shù)解”.若“p∨q”為真,“¬q”為假,則實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知第二象限的角α的終邊與單位圓的交點$P(m,\frac{{\sqrt{3}}}{2})$,則tanα=-$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案