18.已知f(x)=ln(${\sqrt{1+{x^2}}$+x)-$\frac{2}{{{2^x}+1}}$+1,a=f(${\frac{ln3}{3}}$),b=f(${\frac{ln5}{5}}$),c=-f(2-π),下列結(jié)論正確的是( 。
A.b>a>cB.c>a>bC.a>b>cD.c>b>a

分析 先判斷出函數(shù)為單調(diào)增函數(shù)和奇函數(shù),再根據(jù)函數(shù)的性質(zhì)比較大小即可

解答 解:又因為f(-x)=ln(${\sqrt{1+{x^2}}$-x)-$\frac{2}{{2}^{-x}+1}$+1=-[ln(${\sqrt{1+{x^2}}$+x)-$\frac{2}{{{2^x}+1}}$+1]=-f(x),
所以f(x)為奇函數(shù),
易知x>0時,f(x)為增函數(shù),
則函數(shù)f(x)為R上的增函數(shù),
c=-f(2-π)=f(π-2),
因為${\frac{ln3}{3}}$≈0.366,π-2≈3.14-2=1.14,${\frac{ln5}{5}}$≈0.32,
所以π-2>${\frac{ln3}{3}}$>${\frac{ln5}{5}}$
所以f(π-2)>f(${\frac{ln3}{3}}$)>f(${\frac{ln5}{5}}$),
所以c>a>b,
故選:B.

點評 本題考查了函數(shù)的單調(diào)性和奇偶性,以及單調(diào)性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)y=-x2+2px-1在(-∞,-1]上遞增,則p的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等比數(shù)列{an}的各項都是正數(shù),且2a1,$\frac{1}{2}$a3,a2成等差數(shù)列,則$\frac{{a}_{9}+{a}_{10}}{{a}_{7}+{a}_{8}}$=( 。
A.2B.4C.3D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且Sn=n2+2n.
(1)證明:數(shù)列{an}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)正項等比數(shù)列{an}中,a1=3,$\frac{1}{2}{a_3}$是9a1與8a2的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)令bn=$\frac{1}{{{{log}_2}{a_n}•{{log}_3}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn;若對任意n∈N*都有Tn>logm2成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合S={1,2},T={x|x2<4x-3},則S∩T=( 。
A.{1}B.{2}C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字的五位數(shù).
(I)能夠組成多少個奇數(shù)?
(II)能夠組成多少個1和3不相鄰的正整數(shù)?
(III)能夠組成多少個1不在萬位,2不在個位的正整數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知隨機變量ξ服從正態(tài)分布N(5,9),若p(ξ>c+2)=p(ξ<c-2),則c的值為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知平面向量$\overrightarrow m$=(sinx,-cosx),$\overrightarrow n$=(cosx,cosx),函數(shù)f(x)=2$\overrightarrow m$•$\overrightarrow n$+λ,λ∈R.將f(x)的圖象向左平移$\frac{π}{4}$個單位后得到函數(shù)g(x)的圖象,且g(x)的最大值為$\sqrt{2}$.
(I)求實數(shù)λ的值;
(II)在△ABC中,若g($\frac{3}{4}$A)=1,a=2$\sqrt{3}$且△ABC的面積為2$\sqrt{3}$,求b+c的值.

查看答案和解析>>

同步練習(xí)冊答案