已知橢圓)的短軸長與焦距相等,且過定點(diǎn),傾斜角為的直線交橢圓、兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)確定直線軸上截距的范圍.
(Ⅰ);(Ⅱ)

試題分析:(I)由已知得,,…………………………(2分)
,由此解出,………………………………(3分)
從而橢圓方程為…………………(6分)
(II)設(shè),……………………………(7分)
聯(lián)立得:……………………(9分)
………………………(11分)
,即,∴直線軸上截距的范圍是……(13分)
點(diǎn)評:直線和橢圓的綜合問題,一般可以轉(zhuǎn)化為它們的方程所組成的方程組求解的問題,從而用代數(shù)方法解決直線與橢圓的綜合問題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線上的焦點(diǎn),點(diǎn)在拋物線上,點(diǎn),則要使的值最小的點(diǎn)的坐標(biāo)為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與拋物線交于、兩點(diǎn),若,則弦的中點(diǎn)到直線的距離等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

( )拋物線的準(zhǔn)線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知為雙曲線的焦點(diǎn),點(diǎn)在雙曲線上,點(diǎn)坐標(biāo)為
的一條中線恰好在直線上,則線段長度為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線虛軸的一個端點(diǎn)為M,兩個焦點(diǎn)為F1,F(xiàn)2,,則雙曲線離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線上一定點(diǎn),作兩條直線分別交拋物線于、.當(dāng)的斜率存在且傾斜角互補(bǔ)時,則的值為(   )
A.B.C.D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=1+與直線y=k(x-2)+4有兩個交點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(0,)B.(,+∞)
C.(]D.(,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓和雙曲線,有相同的焦點(diǎn),則橢圓與雙曲線的離心率的平方和為( 。
A.B.C.2D.3

查看答案和解析>>

同步練習(xí)冊答案