直線
與拋物線
交于
、
兩點,若
,則弦
的中點到直線
的距離等于( )
試題分析:直線
恒過定點
,恰為拋物線的焦點,即直線過拋物線的焦點,所以
的長度也為
、
兩點到拋物線的準(zhǔn)線
的距離的和,所以弦
的中點到直線
的距離等于2,所以到直線
的距離等于
點評:拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,這個性質(zhì)在解題時經(jīng)常用到.另外過拋物線焦點的弦長公式也經(jīng)常用到.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知當(dāng)橢圓的長軸、短軸、焦距依次成等比時稱橢圓為“黃金橢圓”,請用類比的性質(zhì)定義“黃金雙曲線”,并求“黃金雙曲線”的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓
過橢圓
的兩焦點,與橢圓有且僅有兩個
與圓
相切 ,與橢圓
相交于
兩點記
(1)求橢圓的方程
(2)求
的取值范圍;
(3)求
的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
上一點P到
軸的距離是4,則點P到該拋物線焦點的距離是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)雙曲線與橢圓
有相同焦點,且經(jīng)過點(
,4),求其方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)已知半徑為6的圓
與
軸相切,圓心
在直線
上且在第二象限,直線
過點
.
(Ⅰ)求圓
的方程;
(Ⅱ)若直線
與圓
相交于
兩點且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
上的任意一點到它的兩個焦點
,
的距離之和為
,且其焦距為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知直線
與橢圓
交于不同的兩點A,B.問是否存在以A,B為直徑
的圓 過橢圓的右焦點
.若存在,求出
的值;不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
(
)的短軸長與焦距相等,且過定點
,傾斜角為
的直線
交橢圓
于
、
兩點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)確定直線
在
軸上截距的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如果
是拋物線
上的點,它們的橫坐標(biāo)依次為
是拋物線的焦點,若
,則
_______________.
查看答案和解析>>