(2012•香洲區(qū)模擬)已知橢圓C的焦點(diǎn)在x軸上,中心在原點(diǎn),離心率e=
3
3
,直線l:y=x+2與以原點(diǎn)為圓心,橢圓C的短半軸為半徑的圓O相切.
(I)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左、右頂點(diǎn)分別為A1,A2,點(diǎn)M是橢圓上異于Al,A2的任意一點(diǎn),設(shè)直線MA1,MA2的斜率分別為kMA1,kMA2,證明kMA1,kMA2為定值.
分析:(I)設(shè)橢圓的方程,利用離心率e=
3
3
,直線l:y=x+2與以原點(diǎn)為圓心,橢圓C的短半軸為半徑的圓O相切,確定幾何量,從而可得橢圓的方程;
(Ⅱ)利用M點(diǎn)在橢圓上,計(jì)算斜率,化簡(jiǎn)即可得到結(jié)論.
解答:(I)解:設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)

∵離心率e=
3
3
,∴a2=3c2,∴b2=2c2
∵直線l:y=x+2與以原點(diǎn)為圓心,橢圓C的短半軸為半徑的圓O相切
∴b=
2
2
=
2

∴c2=1
∴a2=3
∴橢圓的方程為
x2
3
+
y2
2
=1
;
(Ⅱ)證明:由橢圓方程得A1(-
3
,0),A2
3
,0),
設(shè)M點(diǎn)坐標(biāo)(x0,y0),則
x02
3
+
y02
2
=1

y02=
2
3
(3-x02)

kMA1kMA2=
y0
x0+
3
×
y0
x0-
3
=
y02
x02-3
=
2
3
(3-x02)
x02-3
=-
2
3

kMA1kMA2是定值-
2
3
是定值.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與圓相切,考查斜率的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•香洲區(qū)模擬)如圖所示,將若干個(gè)點(diǎn)擺成三角形圖案,每條邊(包括兩個(gè)端點(diǎn))有n(n>1,n∈N*)個(gè)點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為an,則
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•香洲區(qū)模擬)已知向量
a
,
b
滿足|
a
|=1,|
b
|=
2
,
a
b
=1
,則
a
b
的夾角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•香洲區(qū)模擬)如圖,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=4,BC=4,BB1=3,M、N分別是B1C1和AC的中點(diǎn).
(1)求異面直線AB1與C1N所成的角;
(2)求三棱錐M-C1CN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•香洲區(qū)模擬)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定義f(x)=
m
n

(1)求函數(shù)f(x)的表達(dá)式,并求其單調(diào)增區(qū)間;
(2)在銳角△ABC中,角A、B、C對(duì)邊分別為a、b、c,且f(A)=1,bc=8,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案