精英家教網 > 高中數學 > 題目詳情
(2012•香洲區(qū)模擬)如圖所示,將若干個點擺成三角形圖案,每條邊(包括兩個端點)有n(n>1,n∈N*)個點,相應的圖案中總的點數記為an,則
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
=( 。
分析:根據圖象的規(guī)律可得出通項公式an,根據數列{
9
anan+1
}的特點可用列項法求其前n項和的公式,而
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
是前2011項的和,代入前n項和公式即可得到答案.
解答:解:每個邊有n個點,把每個邊的點數相加得3n,這樣角上的點數被重復計算了一次,故第n個圖形的點數為3n-3,即an=3n-3.
令Sn=
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
anan+1
=
1
1×2
+
1
2×3
+…+
1
(n-1)n
=1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=
n-1
n

9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
=
2011
2012

故選B.
點評:本題主要考查簡單的和清推理,求等差數列的通項公式和用裂項法對數列進行求和問題,同時考查了計算能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•香洲區(qū)模擬)已知向量
a
,
b
滿足|
a
|=1,|
b
|=
2
,
a
b
=1
,則
a
b
的夾角為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•香洲區(qū)模擬)已知橢圓C的焦點在x軸上,中心在原點,離心率e=
3
3
,直線l:y=x+2與以原點為圓心,橢圓C的短半軸為半徑的圓O相切.
(I)求橢圓C的方程;
(Ⅱ)設橢圓C的左、右頂點分別為A1,A2,點M是橢圓上異于Al,A2的任意一點,設直線MA1,MA2的斜率分別為kMA1,kMA2,證明kMA1,kMA2為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•香洲區(qū)模擬)如圖,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=4,BC=4,BB1=3,M、N分別是B1C1和AC的中點.
(1)求異面直線AB1與C1N所成的角;
(2)求三棱錐M-C1CN的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•香洲區(qū)模擬)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定義f(x)=
m
n

(1)求函數f(x)的表達式,并求其單調增區(qū)間;
(2)在銳角△ABC中,角A、B、C對邊分別為a、b、c,且f(A)=1,bc=8,求△ABC的面積.

查看答案和解析>>

同步練習冊答案