A. | -3 | B. | -2 | C. | 3 | D. | 2 |
分析 f(0)=2,f(-1)=3,列方程組,解得a=$\frac{1}{2},b=1$,從而f(-3)=a-3+b=$(\frac{1}{2})^{-3}+1=9$,進(jìn)而f(f(-3))=f(9),由此能求出結(jié)果.
解答 解:∵a>0且a≠1,函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$滿足f(0)=2,f(-1)=3,
∴$\left\{\begin{array}{l}{f(0)={a}^{0}+b=2}\\{f(-1)={a}^{-1}+b=3}\end{array}\right.$,解得a=$\frac{1}{2},b=1$,
∴f(-3)=a-3+b=$(\frac{1}{2})^{-3}+1=9$,
f(f(-3))=f(9)=$log\frac{1}{3}9$=-2.
故選:B.
點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要 認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}<\frac{1}{a}<{b^2}<{a^2}$ | B. | $\frac{1}<\frac{1}{a}<{a^2}<{b^2}$ | C. | $\frac{1}{a}<\frac{1}<{b^2}<{a^2}$ | D. | $\frac{1}{a}<\frac{1}<{a^2}<{b^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{a}<\frac{1}$ | B. | ac2<bc2 | C. | a2<b2 | D. | a3<b3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com