已知以原點O為中心,為右焦點的雙曲線C的離心率

   (Ⅰ)求雙曲線C的標準方程及其漸近線方程;

   (Ⅱ)如題(20)圖,已知過點的直線與過點(其中)的直線的交點E在雙曲線C上,直線MN與兩條漸近線分別交與G、H兩點,求的面積。

 

 

【答案】

 

解:(I)設C的標準方程是,

則由題意

因此

C的標準方程為

C的漸近線方程為

   (II)解法一:如圖(20)圖,由題意點在直線

上,因此有

故點M、N均在直線上,因此直線MN的方程為

設G、H分別是直線MN與漸近線的交點,

由方程組

 

解得

設MN與x軸的交點為Q,則在直線

(易知),注意到

解法二:設,由方程組得

解得

故直線MN的方程為

注意到因此直線MN的方程為,

下同解法一.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知以原點O為中心,F(
5
,0)
為右焦點的雙曲線C的離心率e=
5
2

(1)求雙曲線C的標準方程及其漸近線方程;
(2)如圖,已知過點M(x1,y1)的直線l1:x1x+4y1y=4與過點N(x2,y2)(其中x2≠x)的直線l2:x2x+4y2y=4的交點E在雙曲線C上,直線MN與兩條漸近線分別交與G、H兩點,求△OGH的面積.精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知以原點O為中心的橢圓的一條準線方程為y=
4
3
3
,離心率e=
3
2
,M是橢圓上的動點
(Ⅰ)若C,D的坐標分別是(0,-
3
),(0,
3
)
,求|MC|•|MD|的最大值;
(Ⅱ)如題(20)圖,點A的坐標為(1,0),B是圓x2+y2=1上的點,N是點M在x軸上的射影,點Q滿足條件:
OQ
=
OM
+
ON
QA
BA
=0
、求線段QB的中點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知以原點O為中心的雙曲線的一條準線方程為x=
5
5
,離心率e=
5

(Ⅰ)求該雙曲線的方程;
(Ⅱ)如圖,點A的坐標為(-
5
,0)
,B是圓x2+(y-
5
)2=1
上的點,點M在雙曲線右支上,|MA|+|MB|的最小值,并求此時M點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:重慶市高考真題 題型:解答題

已知以原點O為中心的橢圓的一條準線方程為,離心率,M是橢圓上的動點,
(Ⅰ)若C,D的坐標分別是(0,),(0,),求|MC|·|MD|的最大值;
(Ⅱ)如圖,點A的坐標為(1,0),B是圓x2+y2=1上的點,N是點M在x軸上的射影,點Q滿足條件:,求線段QB的中點P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:2009年重慶市高考數(shù)學試卷(文科)(解析版) 題型:解答題

已知以原點O為中心的雙曲線的一條準線方程為,離心率
(Ⅰ)求該雙曲線的方程;
(Ⅱ)如圖,點A的坐標為,B是圓上的點,點M在雙曲線右支上,|MA|+|MB|的最小值,并求此時M點的坐標.

查看答案和解析>>

同步練習冊答案