A. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | B. | $({-\frac{{\sqrt{3}}}{3},0})∪({0,\frac{{\sqrt{3}}}{3}})$ | C. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | D. | $({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$ |
分析 把圓的方程化為標(biāo)準(zhǔn)方程,求出圓心和半徑,直線過定點(diǎn)(-1,0),當(dāng)直線y-mx-m=0與圓相切時,根據(jù)圓心到直線的距離d=$\frac{2|m|}{\sqrt{{m}^{2}+1}}$=r=1,求出m的值,數(shù)形結(jié)合求出實(shí)數(shù)m的取值范圍.
解答 解:由題意可知曲線C1:x2+y2-2x=0表示一個圓,化為標(biāo)準(zhǔn)方程得:
(x-1)2+y2=1,所以圓心坐標(biāo)為(1,0),半徑r=1;
C2:(x-1)(y-mx-m)=0表示兩條直線x=1
和y-mx-m=0,
由直線y-mx-m=0可知:此直線過定點(diǎn)(-1,0),
在平面直角坐標(biāo)系中畫出圖象如圖所示:
當(dāng)直線y-mx-m=0與圓相切時,
圓心到直線的距離d=$\frac{2|m|}{\sqrt{{m}^{2}+1}}$=r=1,
化簡得:m2=$\frac{1}{3}$,m=±$\frac{\sqrt{3}}{3}$.
則直線y-mx-m=0與圓相交時,m∈$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$,
故選A
點(diǎn)評 本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\frac{1-lnx}{x^2}$ | B. | $y=\frac{1+lnx}{x^2}$ | C. | $y=\frac{lnx-1}{x^2}$ | D. | $y=\frac{x+lnx}{x^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | 4 | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1或1 | C. | 2 | D. | -2或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{8}$ | B. | $\frac{π}{8}+\frac{1}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{4}+\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com