A. | 1 | B. | -1或1 | C. | 2 | D. | -2或2 |
分析 求出拋物線的焦點坐標,利用A(x0,y0)是C上一點,|AF|=$\frac{5}{4}{y_0}$,列出方程化簡求解即可.
解答 解:拋物線C:x2=2y的焦點為F(0,$\frac{1}{2}$),A(x0,y0)是C上一點,|AF|=$\frac{5}{4}{y_0}$,
可得:$\sqrt{({x}_{0}-0)^{2}+({y}_{0}-\frac{1}{2})^{2}}$=$\frac{5}{4}{y}_{0}$,
可得${{x}_{0}}^{2}$+${{y}_{0}}^{2}$-y0+$\frac{1}{4}$=$\frac{25}{16}{{y}_{0}}^{2}$,
即${{y}_{0}}^{2}$+y0+$\frac{1}{4}$=$\frac{25}{16}{{y}_{0}}^{2}$,解得y0=2,
可得x0=±2.
故選:D.
點評 本題考查拋物線的簡單性質(zhì)的應用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x3 | B. | y=2|x| | C. | y=cosx | D. | $y=lnx-\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | B. | $({-\frac{{\sqrt{3}}}{3},0})∪({0,\frac{{\sqrt{3}}}{3}})$ | C. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | D. | $({-∞,-\frac{{\sqrt{3}}}{3}})∪({\frac{{\sqrt{3}}}{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2x2-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{y}^{2}}{2}$-x2=1 | C. | x2-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com