【題目】如圖,正方形、的邊長(zhǎng)都是1,而且平面、互相垂直.點(diǎn)M上移動(dòng),點(diǎn)N上移動(dòng),若.

1)當(dāng)a為何值時(shí),的長(zhǎng)最。

2)當(dāng)長(zhǎng)最小時(shí),求面與面所成的二面角α的余弦值.

【答案】1; (2.

【解析】

1)作于點(diǎn)P,于點(diǎn)Q,連接,易得是平行四邊形,再將表示為關(guān)于a的函數(shù),利用配方法求最小值即可;

2)取的中點(diǎn)G,連接,根據(jù)二面角的平面角的定義可知即為二面角α的平面角,然后利用余弦定理求解即可.

解:(1)作于點(diǎn)P

于點(diǎn)Q,連接,依題意可得,且,

是平行四邊形

. 由已知,,,

,

所以當(dāng),即M,N分別移動(dòng)到的中點(diǎn)時(shí),的長(zhǎng)取最小值

2)取的中點(diǎn)G,連接,

,

,,

即為二面角α的平面角.

,

所以由余弦定理有.

長(zhǎng)最小時(shí),面與面所成的二面角α的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐PABC中,底面ABC,,D,E分別是AC,PC的中點(diǎn),FPB上一點(diǎn),且,MPA的中點(diǎn),二面角的大小為45°.

1)證明:平面AEF;

2)求直線AF與平面BCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來(lái)估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,設(shè)集合是集合的非空子集,中的最大元素和最小元素之差稱為集合的直徑. 那么集合所有直徑為的子集的元素個(gè)數(shù)之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD的底面是梯形.BCADABBCCD1,AD2,

(Ⅰ)證明;ACBP

(Ⅱ)求直線AD與平面APC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】光伏發(fā)電是利用太陽(yáng)能電池及相關(guān)設(shè)備將太陽(yáng)光能直接轉(zhuǎn)化為電能.近幾年在國(guó)內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

7

8

新增光伏裝機(jī)量兆瓦

0.4

0.8

1.6

3.1

5.1

7.1

9.7

12.2

某位同學(xué)分別用兩種模型:①,②進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于):

經(jīng)過計(jì)算得,,,,其中,.

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說明理由.

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立關(guān)于的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,EAD的中點(diǎn),ACBE相交于點(diǎn)O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;

2)若恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案