3.若實(shí)數(shù)x,y滿足xy=1,則x2+3y2的最小值為2$\sqrt{3}$.

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:∵實(shí)數(shù)x,y滿足xy=1,則x2+3y2的≥2$\sqrt{3}$xy=2$\sqrt{3}$,當(dāng)且僅當(dāng)$x=\sqrt{3}y$=±$\root{4}{3}$時(shí)取等號(hào).
因此最小值為2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.兩個(gè)整數(shù)1908和4187的最大公約數(shù)是( 。
A.53B.43C.51D.67

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=2x和g(x)=x3的圖象的示意圖如圖所示,設(shè)兩函數(shù)的圖象交于點(diǎn)A(x1,y1),B(x2,y2),且x1<x2.若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},則a+b=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.上海市復(fù)興高級(jí)中學(xué)二期改擴(kuò)建工程于2015年9月正式開始,現(xiàn)需要圍建一個(gè)面積火900平方米的矩形地場(chǎng)地的圍墻,有一面長(zhǎng)度為20米的舊墻(圖中斜杠部),有甲、乙兩種維修利用舊墻方案.
甲方案:選取部分舊墻(選取的舊墻的長(zhǎng)度設(shè)為x米,x∈(0,20]),維修后單獨(dú)作為矩形場(chǎng)地的一面圍墻(如方案①圖),多余部分不維修;
乙方案:舊墻全部利用維修后,再續(xù)建一段新墻(新墻的長(zhǎng)度高x米),共同作為矩形場(chǎng)地的一面(如方案②圖)
已知舊墻維修費(fèi)用為10元/米,新墻造價(jià)為80元/米,設(shè)修建總費(fèi)用y.
(1)如果按甲方案修建,試用解析式將修建總費(fèi)用y1表示成關(guān)于x的函數(shù);
(2)如果按乙方案修建,試用解析式將修建總費(fèi)用y2表示成關(guān)于x的函數(shù);
(3)試求出兩種方案中修建總費(fèi)用y1,y2的最小值,并比較哪種方案最節(jié)省費(fèi)用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax2+2ax+4(-3<a<0),其圖象上兩點(diǎn)的橫坐標(biāo)為x1、x&2滿足x1<x2,且x1+x2=1+a,則由(  )
A.f(x1)<f(x2B.f(x1)=f(x2
C.f(x1)>f(x2D.f(x1)、f(x&2)的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.不等式3x2-7x-10≥0的解集是{x|x≥$\frac{10}{3}$或x≤-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.判斷函數(shù)f(x)=$\frac{{\sqrt{{x^2}+1}+x-1}}{{\sqrt{{x^2}+1}+x+1}}$的奇偶性( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足${a_1}=\frac{1}{3}$,${a_{n+1}}=\frac{a_n}{{2{a_n}+1}},n∈{N^*}$
(1)求a2,a3,a4;
(2)是否存在正整數(shù)p,q使得對(duì)任意的n∈N*都有${a_n}=\frac{1}{pn+q}$,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=xex,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(-1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案