【題目】已知某海濱浴場(chǎng)海浪的高度y(米)是時(shí)間t的(0≤t≤24,單位:小時(shí))函數(shù),記作y=ft),下表是某日各時(shí)的浪高數(shù)據(jù):

th

0

3

6

9

12

15

18

21

24

ym

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

經(jīng)長(zhǎng)期觀測(cè),y=ft的曲線可近似地看成是函數(shù)y=Acosωtb的圖象

1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωtb的最小正周期T、振幅A及函數(shù)表達(dá)式;

2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8時(shí)到晚上20時(shí)之間,有多長(zhǎng)時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)?

【答案】1T=12,A=0.5 ;(26個(gè)小時(shí)可供沖浪者進(jìn)行運(yùn)動(dòng)

【解析】試題(1)由表中數(shù)據(jù),知周期T12,

ω.

t0y1.5,得Ab1.5.

t3,y1.0,得b1.0.

A0.5,b1,振幅為

ycost1.

(2)由題意知,當(dāng)y>1時(shí)才可對(duì)沖浪者開放.

cost1>1,cost>0.

2kπ<t<2kπ,

12k3<t<12k3.

∵0≤t≤24,故可令k分別為0、12,得0≤t<39<t<1521<t≤24.

在規(guī)定時(shí)間上午800至晚上2000之間,有6個(gè)小時(shí)時(shí)間可供沖浪者運(yùn)動(dòng),即上午900至下午1500.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,滿足.

(Ⅰ)(i)求數(shù)列的通項(xiàng)公式;

(ii)已知對(duì)于,不等式恒成立,求實(shí)數(shù)的最小值;

(Ⅱ) 數(shù)列的前項(xiàng)和為,滿足,是否存在非零實(shí)數(shù),使得數(shù)列為等比數(shù)列? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意,若數(shù)列滿足,則稱這個(gè)數(shù)列為“數(shù)列”.

(1)已知數(shù)列:,,是“數(shù)列”,求實(shí)數(shù)的取值范圍;

(2)已知等差數(shù)列的公差,前項(xiàng)和為,數(shù)列是“數(shù)列”,求首項(xiàng)的取值范圍;

(3)設(shè)數(shù)列的前項(xiàng)和為,且,. 設(shè),是否存在實(shí)數(shù),使得數(shù)列為“數(shù)列”. 若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題pf(x)=-x2+2ax+1-ax∈[0,1]時(shí)的最大值不超過2,命題q:正數(shù)xy滿足x+2y=8,且 恒成立. 若p∨(q)為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的極坐標(biāo)為(2 , ),曲線C的參數(shù)方程為 (α為參數(shù)).
(1)直線l過M且與曲線C相切,求直線l的極坐標(biāo)方程;
(2)點(diǎn)N與點(diǎn)M關(guān)于y軸對(duì)稱,求曲線C上的點(diǎn)到點(diǎn)N的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上確定一點(diǎn)E,使得PB∥平面ACE,并求 的值;
(2)在(1)條件下,求平面PAB與平面ACE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),數(shù)列{bn}滿足:bn+12bn+2,且an+1anbn

1)求證:數(shù)列{bn+2}是等比數(shù)列;

2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案