【題目】已知某海濱浴場(chǎng)海浪的高度y(米)是時(shí)間t的(0≤t≤24,單位:小時(shí))函數(shù),記作y=f(t),下表是某日各時(shí)的浪高數(shù)據(jù):
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長(zhǎng)期觀測(cè),y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b的圖象.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωt+b的最小正周期T、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8時(shí)到晚上20時(shí)之間,有多長(zhǎng)時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)?
【答案】(1)T=12,A=0.5, ;(2)有6個(gè)小時(shí)可供沖浪者進(jìn)行運(yùn)動(dòng).
【解析】試題(1)由表中數(shù)據(jù),知周期T=12,
∵ω===.
由t=0,y=1.5,得A+b=1.5.
由t=3,y=1.0,得b=1.0.
∴A=0.5,b=1,∴振幅為,
∴y=cost+1.
(2)由題意知,當(dāng)y>1時(shí)才可對(duì)沖浪者開放.
∴cost+1>1,∴cost>0.
∴2kπ-<t<2kπ+,
即12k-3<t<12k+3.
∵0≤t≤24,故可令k分別為0、1、2,得0≤t<3或9<t<15或21<t≤24.
∴在規(guī)定時(shí)間上午8:00至晚上20:00之間,有6個(gè)小時(shí)時(shí)間可供沖浪者運(yùn)動(dòng),即上午9:00至下午15:00.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,滿足.
(Ⅰ)(i)求數(shù)列的通項(xiàng)公式;
(ii)已知對(duì)于,不等式恒成立,求實(shí)數(shù)的最小值;
(Ⅱ) 數(shù)列的前項(xiàng)和為,滿足,是否存在非零實(shí)數(shù),使得數(shù)列為等比數(shù)列? 并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意,若數(shù)列滿足,則稱這個(gè)數(shù)列為“數(shù)列”.
(1)已知數(shù)列:,,是“數(shù)列”,求實(shí)數(shù)的取值范圍;
(2)已知等差數(shù)列的公差,前項(xiàng)和為,數(shù)列是“數(shù)列”,求首項(xiàng)的取值范圍;
(3)設(shè)數(shù)列的前項(xiàng)和為,,且,. 設(shè),是否存在實(shí)數(shù),使得數(shù)列為“數(shù)列”. 若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:f(x)=-x2+2ax+1-a在x∈[0,1]時(shí)的最大值不超過2,命題q:正數(shù)x,y滿足x+2y=8,且 恒成立. 若p∨(q)為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的極坐標(biāo)為(2 , ),曲線C的參數(shù)方程為 (α為參數(shù)).
(1)直線l過M且與曲線C相切,求直線l的極坐標(biāo)方程;
(2)點(diǎn)N與點(diǎn)M關(guān)于y軸對(duì)稱,求曲線C上的點(diǎn)到點(diǎn)N的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.
(1)在PD上確定一點(diǎn)E,使得PB∥平面ACE,并求 的值;
(2)在(1)條件下,求平面PAB與平面ACE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若恒成立,求b-a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),數(shù)列{bn}滿足:bn+1=2bn+2,且an+1﹣an=bn;
(1)求證:數(shù)列{bn+2}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com