【題目】命題p:f(x)=-x2+2ax+1-a在x∈[0,1]時的最大值不超過2,命題q:正數(shù)x,y滿足x+2y=8,且 恒成立. 若p∨(q)為假命題,求實數(shù)a的取值范圍.
【答案】實數(shù)a的取值范圍是(-∞,-1).
【解析】分析:先求出關(guān)于為真時的a的取值范圍,根據(jù)p∨(q)為假命題,得到p假q真,得到關(guān)于a的不等式組,解出即可.
詳解:當(dāng)a≤0時,f(x)max=f(0)=1-a≤2,解得-1≤a≤0;
當(dāng)0<a<1時,f(x)max=f(a)=a2-a+1≤2,解得0<a<1;
當(dāng)a≥1時,f(x)max=f(1)=a≤2,解得1≤a≤2.
所以使命題p為真的a的取值范圍是[-1,2].
由x+2y=8,得+=1,又x,y都是正數(shù),
所以+==+≥+2=1,當(dāng)且僅當(dāng)即時,等號成立,故min=1.
因為a≤+恒成立,所以a≤1,所以使命題q為真的a的取值范圍是(-∞,1].
因為p∨(q)為假命題,所以p假q真,
所以則a<-1,
故實數(shù)a的取值范圍是(-∞,-1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓一個焦點為,離心率.
(Ⅰ)求橢圓的方程式.
(Ⅱ)定點,為橢圓上的動點,求的最大值;并求出取最大值時點的坐標(biāo)求.
(Ⅲ)定直線,為橢圓上的動點,證明點到的距離與到定直線的距離的比值為常數(shù),并求出此常數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐PABC中,PA⊥底面ABC,∠BAC=90°.點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(1)求證:MN∥平面BDE;
(2)求二面角CEMN的正弦值;
(3)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國內(nèi)某知名大學(xué)有男生14000人,女生10000人,該校體育學(xué)院想了解本校學(xué)生的運(yùn)動狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取120人,統(tǒng)計他們平均每天運(yùn)動的時間,如下表:(平均每天運(yùn)動的時間單位:小時,該校學(xué)生平均每天運(yùn)動的時間范圍是).
男生平均每天運(yùn)動時間分布情況:
女生平均每天運(yùn)動時間分布情況:
(1)請根據(jù)樣本估算該校男生平均每天運(yùn)動的時間(結(jié)果精確到0.1);
(2)若規(guī)定平均每天運(yùn)動的時間不少于2小時的學(xué)生為“運(yùn)動達(dá)人”,低于2小時的學(xué)生為“非運(yùn)動達(dá)人”.
①請根據(jù)樣本估算該校“運(yùn)動達(dá)人”的數(shù)量;
②請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“是否為‘運(yùn)動達(dá)人’與性別有關(guān)?”
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某海濱浴場海浪的高度y(米)是時間t的(0≤t≤24,單位:小時)函數(shù),記作y=f(t),下表是某日各時的浪高數(shù)據(jù):
t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(m) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長期觀測,y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b的圖象.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωt+b的最小正周期T、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8時到晚上20時之間,有多長時間可供沖浪者進(jìn)行運(yùn)動?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=mxα的圖象經(jīng)過點A(2,2).
(1)試比較2ln f(3)與3ln f(2)的大小;
(2)定義在R上的函數(shù)g(x)滿足g(-x)=g(x), g(4+x)=g(4-x),且當(dāng)x∈[0,4]時,
. 若關(guān)于x的不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151個整數(shù)解,求實數(shù)n的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是橢圓 在第一象限上的動點,過點P引圓x2+y2=4的兩條切線PA、PB,切點分別是A、B,直線AB與x軸、y軸分別交于點M、N,則△OMN面積的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+kx+2y+k2=0,過點P(1,﹣1)可作圓的兩條切線,則實數(shù)k的取值范圍是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com