已知實數(shù)x,y滿足約束條件
y≥1
y≤2x-1
x+y≤5
,則目標函數(shù)z=x-y的最小值等于
 
考點:簡單線性規(guī)劃
專題:數(shù)形結合,不等式的解法及應用
分析:由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合求得最優(yōu)解,解方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答: 解:由約束條件
y≥1
y≤2x-1
x+y≤5
作出可行域如圖,

聯(lián)立
y=2x-1
x+y=5
,解得:C(2,3),
化z=x-y為y=x-z,
由圖可知,當直線y=x-z過C時目標函數(shù)有最小值為z=2-3=-1.
故答案為:-1.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=1,a1=1,an+1=(1+
1
n
)an+
n+1
2n

(Ⅰ)設bn=
an
n
,求數(shù)列{bn}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn;
(Ⅲ)設cn=(2n-an)2n,求證:
1
c1c2
+
1
c2c3
+…+
1
cncn+1
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)滿足f(x+1)=f(x-1),且當x∈[0,1]時,f(x)=x2,則關于x的方程f(x)=2-2|x|
在[-5,5]上根的個數(shù)是( 。
A、4個B、6個C、8個D、10個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
lnx+ax2
(a∈R).
(Ⅰ)若曲線y=f(x)在點(
1
2
,f(
1
2
))
處的切線l與直線l:x+2y-2=0垂直,求a的值;
(Ⅱ)討論函數(shù)f(x)的單調性;若存在極值點x0∈(1,2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若動點P(x,y)到定點A(3,4)的距離比P到x軸的距離多一個單位長度,則動點P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點A(1,0),B(1,
3
),O為坐標原點,點C在第三象限,且∠AOC=
6
,設
OC
=-2
OA
OB
,(λ∈R),則λ等于( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為( 。
A、
5
4
B、
5
3
C、
3
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

經(jīng)過兩點A(-7,-6
2
),B(2
7
,3)
的雙曲線的標準方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,二次函數(shù)是( 。
A、y=8x2+1
B、y=8x+1
C、y=
8
x
D、y=
8
x2
+1

查看答案和解析>>

同步練習冊答案