已知實(shí)數(shù)x,y滿足約束條件
y≥1
y≤2x-1
x+y≤5
,則目標(biāo)函數(shù)z=x-y的最小值等于
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合求得最優(yōu)解,解方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答: 解:由約束條件
y≥1
y≤2x-1
x+y≤5
作出可行域如圖,

聯(lián)立
y=2x-1
x+y=5
,解得:C(2,3),
化z=x-y為y=x-z,
由圖可知,當(dāng)直線y=x-z過(guò)C時(shí)目標(biāo)函數(shù)有最小值為z=2-3=-1.
故答案為:-1.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,a1=1,an+1=(1+
1
n
)an+
n+1
2n

(Ⅰ)設(shè)bn=
an
n
,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn;
(Ⅲ)設(shè)cn=(2n-an)2n,求證:
1
c1c2
+
1
c2c3
+…+
1
cncn+1
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)滿足f(x+1)=f(x-1),且當(dāng)x∈[0,1]時(shí),f(x)=x2,則關(guān)于x的方程f(x)=2-2|x|
在[-5,5]上根的個(gè)數(shù)是(  )
A、4個(gè)B、6個(gè)C、8個(gè)D、10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
lnx+ax2
(a∈R).
(Ⅰ)若曲線y=f(x)在點(diǎn)(
1
2
,f(
1
2
))
處的切線l與直線l:x+2y-2=0垂直,求a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;若存在極值點(diǎn)x0∈(1,2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若動(dòng)點(diǎn)P(x,y)到定點(diǎn)A(3,4)的距離比P到x軸的距離多一個(gè)單位長(zhǎng)度,則動(dòng)點(diǎn)P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(1,0),B(1,
3
),O為坐標(biāo)原點(diǎn),點(diǎn)C在第三象限,且∠AOC=
6
,設(shè)
OC
=-2
OA
OB
,(λ∈R),則λ等于( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為( 。
A、
5
4
B、
5
3
C、
3
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)兩點(diǎn)A(-7,-6
2
),B(2
7
,3)
的雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,二次函數(shù)是( 。
A、y=8x2+1
B、y=8x+1
C、y=
8
x
D、y=
8
x2
+1

查看答案和解析>>

同步練習(xí)冊(cè)答案