在平面直角坐標(biāo)系中,已知過點的橢圓的右焦點為,過焦點且與軸不重合的直線與橢圓交于,兩點,點關(guān)于坐標(biāo)原點的對稱點為,直線,分別交橢圓的右準(zhǔn)線,兩點.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點的坐標(biāo)為,試求直線的方程;
(3)記,兩點的縱坐標(biāo)分別為,,試問是否為定值?若是,請求出該定值;若不是,請說明理由.

(1),(2),(3).

解析試題分析:(1)求橢圓方程,基本方法是待定系數(shù)法.關(guān)鍵是找全所需條件. 橢圓中三個未知數(shù)的確定只需兩個獨立條件,根據(jù)橢圓定義:點到兩個焦點距離和為,求出的值,再由求出的值,就可得到橢圓的標(biāo)準(zhǔn)方程(2)由點關(guān)于坐標(biāo)原點的對稱點為,可直接寫出點坐標(biāo);又由點,可得直線方程,再由方程與橢圓方程解出A點坐標(biāo),根據(jù)兩點式就可寫出直線的方程,(3)直線與橢圓位置關(guān)系問題就要從其位置關(guān)系出發(fā),先根據(jù)直線AB垂直軸的特殊情況下探求的值,再利用點共線及點在橢圓上條件,逐步消元,直到定值.本題難點在如何利用條件消去參數(shù). 點共線可得到坐標(biāo)關(guān)系,而利用點差法得到斜率關(guān)系是解決本題的關(guān)鍵.
試題解析:(1)由題意,得,即,  2分
,橢圓的標(biāo)準(zhǔn)方程為.              5分
(2),,又,
直線,                       7分
聯(lián)立方程組,解得,            9分
直線,即.          10分
(3)當(dāng)不存在時,易得,
當(dāng)存在時,設(shè),,則,
,,兩式相減, 得,
,令,則, 12分
直線方程:,,
直線方程:,,  14分
,又,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,左、右兩個焦點分別為、,上頂點,為正三角形且周長為6,直線與橢圓相交于兩點.
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且△的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于、兩點,若(為坐標(biāo)原點),試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是拋物線上的兩個點,點的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點在直線的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)C為W上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是橢圓的右焦點;圓軸交于兩點,其中是橢圓的左焦點.

(1)求橢圓的離心率;
(2)設(shè)圓軸的正半軸的交點為,點是點關(guān)于軸的對稱點,試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點,若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點,試問:在y軸正半軸上是否存在一個定點M滿足,若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的方程為,雙曲線的左、右焦點分別為的左、右頂點,而的左、右頂點分別是的左、右焦點。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個不同的交點,且L與的兩個焦點A和B滿足(其中O為原點),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案