市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情
況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)
的.同一條道路去程與回程是否堵車相互獨(dú)立. 假設(shè)李生早上需要先開車送小孩去丙地小學(xué),
再返回經(jīng)甲地趕去乙地上班.假設(shè)道路、、上下班時(shí)間往返出現(xiàn)擁堵的概率都是,
道路、上下班時(shí)間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會遲到.

(1)求李生小孩按時(shí)到校的概率;
(2)李生是否有八成把握能夠按時(shí)上班?
(3)設(shè)表示李生下班時(shí)從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求的均值.

(1)(2)李生沒有八成把握能夠按時(shí)上班(3)

解析試題分析:⑴因?yàn)榈缆?i>DE上班時(shí)間往返出現(xiàn)擁堵的概率分別是,
因此從甲到丙遇到擁堵的概率是 
所以李生小孩能夠按時(shí)到校的概率是;                    
⑵甲到丙沒有遇到擁堵的概率是,                                 
丙到甲沒有遇到擁堵的概率也是,                                
甲到乙遇到擁堵的概率是,                      
甲到乙沒有遇到擁堵的概率是,李生上班途中均沒有遇到擁堵的概率是,所以李生沒有八成把握能夠按時(shí)上班
⑶依題意可以取.                                               
=,=,=,


0
1
2




分布列是:
.
考點(diǎn):隨機(jī)事件概率
點(diǎn)評:本題著重考查了用樹狀圖列舉隨機(jī)事件出現(xiàn)的所有情況,并求出某些事件的概率,但
應(yīng)注意在求概率時(shí)各種情況出現(xiàn)的可能性務(wù)必相同.用到的知識點(diǎn)為:概率=所求情況數(shù)與
總情況數(shù)之比.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會的干部競選.
(1)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2013年4月20日8時(shí)02分四川省雅安市蘆山縣(北緯30.3,東經(jīng)103.0)發(fā)生7.0級地震。一方有難,八方支援,重慶眾多醫(yī)務(wù)工作者和志愿者加入了抗災(zāi)救援行動。其中重慶某醫(yī)院外科派出由5名骨干醫(yī)生組成的救援小組,奔赴受災(zāi)第一線參與救援。現(xiàn)將這5名醫(yī)生分別隨機(jī)分配到受災(zāi)最嚴(yán)重的蘆山、寶山、天全三縣中的某一個(gè)。
(1)求每個(gè)縣至少分配到一名醫(yī)生的概率。
(2)若將隨機(jī)分配到蘆山縣的人數(shù)記為,求隨機(jī)變量的分布列,期望和方差。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知甲箱中只放有x個(gè)紅球與y個(gè)白球,乙箱中只放有2個(gè)紅球、1個(gè)白球與1個(gè)黑球(球除顏色外,無其它區(qū)別). 若甲箱從中任取2個(gè)球, 從乙箱中任取1個(gè)球.
(Ⅰ)記取出的3個(gè)球的顏色全不相同的概率為P,求當(dāng)P取得最大值時(shí)的值;
(Ⅱ)當(dāng)時(shí),求取出的3個(gè)球中紅球個(gè)數(shù)的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于為正品,小于為次品.現(xiàn)隨機(jī)抽取這兩種元件各件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:

測試指標(biāo)





元件A





元件B





(Ⅰ)試分別估計(jì)元件A,元件B為正品的概率;
(Ⅱ)生產(chǎn)一件元件A,若是正品可盈利40元,若是次品則虧損5元;生產(chǎn)一件元件B,若是正品可盈利50元,若是次品則虧損10元.在(Ⅰ)的前提下,
(。┯為生產(chǎn)1件元件A和1件元件B所得的總利潤,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(ⅱ)求生產(chǎn)5件元件B所獲得的利潤不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成。
(1)求出甲考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;
(2)若考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。試從至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某食品廠為了檢查甲乙兩條自動包裝流水線的生產(chǎn)情況,隨即在這兩條流水線上各抽取40件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量值落在的產(chǎn)品為合格品,否則為不合格品.表1是甲流水線樣本頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.

表1:(甲流水線樣本頻數(shù)分布表)  圖1:(乙流水線樣本頻率分布直方圖) 
(1)根據(jù)上表數(shù)據(jù)在答題卡上作出甲流水線樣本的頻率分布直方圖;
(2)若以頻率作為概率,試估計(jì)從兩條流水線分別任。奔a(chǎn)品,該產(chǎn)品恰好是合格品的概率分別是多少;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答有多大的把握認(rèn)為“產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān)”.

 
甲流水線
 乙流水線
 合計(jì)
合格品


 
不合格品


 
合 計(jì)
 
 

附:下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某社區(qū)舉辦的《有獎(jiǎng)知識問答比賽》中,甲、乙、丙三人同時(shí)回答某一道題,已知甲回答對這道題的概率是,甲、丙二人都回答錯(cuò)的概率是,乙、丙二人都回答對的概率是
(Ⅰ)求乙、丙二人各自回答對這道題的概率;
(Ⅱ)設(shè)乙、丙二人中回答對該題的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案