生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于為正品,小于為次品.現(xiàn)隨機(jī)抽取這兩種元件各件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo) | |||||
元件A | |||||
元件B |
(Ⅰ) (Ⅱ)(。66 (ⅱ)
解析試題分析:(Ⅰ)解:元件A為正品的概率約為.
元件B為正品的概率約為.
(Ⅱ)解:(ⅰ)隨機(jī)變量的所有取值為.
; ;
; .
所以,隨機(jī)變量的分布列為:
.
(ⅱ)設(shè)生產(chǎn)的5件元件B中正品有件,則次品有件.
依題意,得 , 解得 .
所以 ,或.
設(shè)“生產(chǎn)5件元件B所獲得的利潤不少于140元”為事件,
則 .
考點(diǎn):離散型隨機(jī)變量及其分布列;離散型隨機(jī)變量的期望與方差.
點(diǎn)評(píng):熟練掌握分類討論的思想方法、古典概型的概率計(jì)算公式、相互獨(dú)立事件的概率計(jì)算公式、數(shù)學(xué)期望的定義、二項(xiàng)分布列的計(jì)算公式是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
袋中有12個(gè)小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為,得到黑球或黃球的概率是,得到黃球或綠球的概率是,試求得到黑球、黃球、綠球的概率各是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩人參加某種選拔測試.在備選的道題中,甲答對(duì)其中每道題的概率都是,乙能答對(duì)其中的道題.規(guī)定每次考試都從備選的道題中隨機(jī)抽出道題進(jìn)行測試,答對(duì)一題加分,答錯(cuò)一題(不答視為答錯(cuò))減分,至少得分才能入選.
(1)求甲得分的數(shù)學(xué)期望;
(2)求甲、乙兩人同時(shí)入選的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校從高二年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將其會(huì)考的政治成績(均為整數(shù))分成六段: ,,…,后得到如下頻率分布直方圖.
(Ⅰ)求圖中的值
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)該校高二年級(jí)學(xué)生政治成績的平均分;
(Ⅲ)用分層抽樣的方法在80分以上(含 80分)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任意選取2人,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個(gè)口袋中有質(zhì)地、大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)的和為偶數(shù)算甲贏,否則算乙贏.
(Ⅰ)求甲贏且編號(hào)的和為6的事件發(fā)生的概率;
(Ⅱ)這種游戲規(guī)則公平嗎?試用概率說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情
況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)
的.同一條道路去程與回程是否堵車相互獨(dú)立. 假設(shè)李生早上需要先開車送小孩去丙地小學(xué),
再返回經(jīng)甲地趕去乙地上班.假設(shè)道路、、上下班時(shí)間往返出現(xiàn)擁堵的概率都是,
道路、上下班時(shí)間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會(huì)遲到.
(1)求李生小孩按時(shí)到校的概率;
(2)李生是否有八成把握能夠按時(shí)上班?
(3)設(shè)表示李生下班時(shí)從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量
(Ⅰ)若,求向量的概率;
(Ⅱ)若用計(jì)算機(jī)產(chǎn)生的隨機(jī)二元數(shù)組構(gòu)成區(qū)域:,求二元數(shù)組滿足1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)和分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量表示方程實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程有實(shí)根的概率;
(2)求的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
現(xiàn)有長分別為、、的鋼管各根(每根鋼管質(zhì)地均勻、粗細(xì)相同且附有不同的編號(hào)),從中隨機(jī)抽取根(假設(shè)各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.
(1)當(dāng)時(shí),記事件{抽取的根鋼管中恰有根長度相等},求;
(2)當(dāng)時(shí),若用表示新焊成的鋼管的長度(焊接誤差不計(jì)),①求的分布列;
②令,,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com