(2013•海淀區(qū)一模)已知函數(shù)f(x)=
2x-a ,      x≥0
x2+ax+a ,     x<0
有三個不同的零點,則實數(shù)a的取值范圍是
a>4
a>4
分析:由題意可得函數(shù)f(x)的圖象與x軸有三個不同的交點,結合圖象求出實數(shù)a的取值范圍.
解答:解:由題意可得函數(shù)f(x)的圖象與x軸有三個不同的交點,如圖所示:
等價于當x≥0時,方程2x-a=0有一個根,且x<0時,方程x2+ax+a=0有兩個根,
a>0
△=a2-4a>0
⇒a>4.
故實數(shù)a的取值范圍是a>4.
故答案為:a>4.
點評:本題主要考查函數(shù)的零點與方程的根的關系,體現(xiàn)了化歸與轉化、數(shù)形結合的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•海淀區(qū)一模)已知a>0,下列函數(shù)中,在區(qū)間(0,a)上一定是減函數(shù)的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•海淀區(qū)一模)在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又PA=AB=4,∠CDA=120°,點N在線段PB上,且PN=
2

(Ⅰ)求證:BD⊥PC;
(Ⅱ)求證:MN∥平面PDC;
(Ⅲ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•海淀區(qū)一模)在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC中點,又∠CAD=30°,PA=AB=4,點N在線段PB上,且
PN
NB
=
1
3

(Ⅰ)求證:BD⊥PC;
(Ⅱ)求證:MN∥平面PDC;
(Ⅲ)設平面PAB∩平面PCD=l,試問直線l是否與直線CD平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•海淀區(qū)一模)函數(shù)f(x)=
13
x3-kx,其中實數(shù)k為常數(shù).
(I) 當k=4時,求函數(shù)的單調區(qū)間;
(II) 若曲線y=f(x)與直線y=k只有一個交點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•海淀區(qū)一模)已知圓M:(x-
2
2+y2=
7
3
,若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右頂點為圓M的圓心,離心率為
2
2

(I)求橢圓C的方程;
(II)已知直線l:y=kx,若直線l與橢圓C分別交于A,B兩點,與圓M分別交于G,H兩點(其中點G在線段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

同步練習冊答案