如果方程
x2
m-6
+
y2
3-m
=1表示雙曲線,則m的取值范圍是
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:討論雙曲線的焦點(diǎn)位置,注意將方程化為標(biāo)準(zhǔn)方程,解不等式,最后求并即可.
解答: 解:若方程
x2
m-6
+
y2
3-m
=1表示焦點(diǎn)在x軸上的雙曲線,
即有
x2
m-6
-
y2
m-3
=1,則m-6>且m-3>0,解得m>6;
若方程
x2
m-6
+
y2
3-m
=1表示焦點(diǎn)在y軸上的雙曲線,
即有
y2
3-m
-
x2
6-m
=1,則3-m>且6-m>0,解得m<3.
綜上可得,m>6或m<3.
故答案為:m>6或m<3.
點(diǎn)評(píng):本題考查雙曲線的方程和性質(zhì),考查分類討論的思想方法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=
n
4an
,其前n項(xiàng)和為 Tn,求證:
1
4
≤Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1+2ai)i=1-bi,其中a、b∈R,i是虛數(shù)單位,則|a+bi|=( 。
A、
1
2
+i
B、5
C、
5
4
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:π是無理數(shù);命題q:π是有理數(shù);則以下命題中的假命題是( 。
A、p或qB、p且¬q
C、¬p或¬qD、¬p且q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-3,x>0
g(x),x<0
是(-∞,+∞)上的奇函數(shù),則g(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,an=2an-1+2n,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x-2x+1+1,函數(shù)g(x)=asin(
π
6
x)-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是(  )
A、(0,
1
2
]
B、[
1
2
,
4
3
]
C、[
2
3
,
4
3
]
D、[
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2+y2-x+y+m=0表示一個(gè)圓,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
-x2+2x+3
-
3
(x∈[0,2])的圖象繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)θ(θ為銳角),若所得曲線仍是一個(gè)函數(shù)的圖象,則θ的范圍是( 。
A、(0,
π
3
]
B、(0,
π
3
C、(
π
3
,
π
2
D、[
π
3
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案