19.已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=2+2sinφ}\end{array}\right.$(φ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(Ⅰ)求曲線C在極坐標(biāo)系中的方程;
(Ⅱ)求直線l被曲線C截得的弦長.

分析 (Ⅰ)求出曲線C的普通方程,即可求曲線C在極坐標(biāo)系中的方程;
(Ⅱ)求出圓心到直線的距離,利用勾股定理求直線l被曲線C截得的弦長.

解答 解:(Ⅰ)曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=2+2sinφ}\end{array}\right.$(φ為參數(shù)),普通方程為x2+(y-2)2=4,即x2+y2-4y=0,
∴曲線C在極坐標(biāo)系中的方程為ρ=4sinθ;
(Ⅱ)直線l的方程為ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$,即x+y-4=0,
圓心到直線的距離d=$\frac{|0+2-4|}{\sqrt{2}}$=$\sqrt{2}$,
∴直線l被曲線C截得的弦長=2$\sqrt{4-2}$=2$\sqrt{2}$.

點評 本題考查三種方程的互化,考查點到直線距離公式的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖程序輸出的結(jié)果是2500.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=(5x-3)3的導(dǎo)數(shù)是( 。
A.y'=3(5x-3)2B.y'=15(5x-3)2C.y'=9(5x-3)2D.y'=12(5x-3)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知三次函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=-3x2+3且f(0)=-1,$g(x)=xlnx+\frac{a}{x}(a≥1)$.
(1)求f(x)的極值;
(2)求證:對任意x1,x2∈(0,+∞),都有f(x1)≤g(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)$\frac{3-i}{1-i}$在復(fù)平面上所對應(yīng)的點在第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在空間直角坐標(biāo)系D-xyz中,四棱柱ABCD-A1B1C1D1為長方體,AA1=AB=2AD,點E為C1D1的中點,則二面角B1-A1B-E的余弦值為( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)三條不同的直線l1,l2,l3滿足l1⊥l3,l2⊥l3,則l1與l2(  )
A.是異面直線B.是相交直線
C.是平行直線D.可能相交,或相交,或異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.要得到函數(shù)$y=\frac{{\sqrt{2}}}{2}sinx+\frac{{\sqrt{2}}}{2}cosx+1$的圖象,需要把函數(shù)y=sinx的圖象(  )
A.向右平移$\frac{π}{4}$個單位,再向上平移1個單位
B.向左平移$\frac{π}{4}$個單位,再向上平移1個單位
C.向左平移$\frac{π}{4}$個單位,再向下平移1個單位
D.向右平移$\frac{π}{4}$個單位,再向下平移1個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.滿足{1,2}?A⊆{1,2,3,4,5,6}的集合A的個數(shù)有( 。﹤.
A.13B.14C.15D.16

查看答案和解析>>

同步練習(xí)冊答案