6.函數(shù)y=cos(sinx)是偶函數(shù)(填“奇”“偶”或“非奇非偶”),最小正周期為π.值域?yàn)閇cos1,1].

分析 根據(jù)偶函數(shù)的定義即可證明,根據(jù)周期的定義即可求出,根據(jù)函數(shù)的單調(diào)性即可求出值域.

解答 解:f(-x)=cos(sin(-x))=cos(-sinx)=cos(sinx)=f(x),
又-1≤sinx≤1,
∴f(x)為偶函數(shù),
當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時(shí),-1≤sinx≤1,
∴最小正周期為π,
∵cos(sin(x+π))=cos(-sinx)=cos(sinx),顯然π是一個(gè)周期,
若該函數(shù)還有一個(gè)周期T<π,則1=cos(sin0)=cos(sinT),即sinT=2kπ∈[-1,1],即k只能為0,于是sinT=0,但0<T<π,矛盾!
∴最小正周期為π,
∵-1≤sinx≤1,cos(sinx)是偶函數(shù),[0,$\frac{π}{2}$]區(qū)間單調(diào)遞減
∴cos(1)≤cos(sinx)≤cos(0)
∴值域?yàn)閇cos(1),1],
故答案為:偶,π,[cos1,1].

點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的奇偶性,三角函數(shù)的周期性質(zhì),和值域,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=sin2x+sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)的最小正周期為( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若正項(xiàng)數(shù)列{an}中,a1+a2+a3+…+an=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),n∈N*.則數(shù)列{an}的通項(xiàng)公式為( 。
A.an=$\sqrt{n}$-$\sqrt{n-1}$B.an=$\sqrt{n}$+$\sqrt{n-1}$C.an=$\sqrt{n}$-$\sqrt{n+1}$D.an=$\sqrt{n}$+$\sqrt{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.y=1-2sin(2x+$\frac{π}{3}$)的值域?yàn)閇-1,3],當(dāng)y取最大值時(shí),x=kπ-$\frac{5π}{12}$(k∈Z);當(dāng)y取最小值時(shí),x=kπ+$\frac{π}{12}$(k∈Z),周期為π,單調(diào)遞增區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z);單調(diào)遞減區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π])的圖象如圖所示,試求該函數(shù)的振幅、頻率和初相.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)區(qū)間;
(3)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),函數(shù)g(x)=f(x)-k恰有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,四邊形OABC是邊長(zhǎng)為1的正方形,$\overrightarrow{OA}$=e1,$\overrightarrow{OC}$=e2,D、E分別為AB、BC中點(diǎn).
求:①用e1、e2表示$\overrightarrow{OD}$,$\overrightarrow{OE}$;
②計(jì)算$\overrightarrow{OD}$•$\overrightarrow{OE}$;
③∠DOE=θ,求cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若sin(π-α)=log8$\frac{1}{4}$,則cos(π+α)的值為(  )
A.$\frac{\sqrt{5}}{3}$B.-$\frac{\sqrt{5}}{3}$C.±$\frac{\sqrt{5}}{3}$D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若a、b、c、d∈R+,且a+b=8,c+d=12,則|(a+bi)(c+di)|的最小值是(  )
A.24B.36C.48D.60

查看答案和解析>>

同步練習(xí)冊(cè)答案