設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點(diǎn),Q為圓周上任一點(diǎn).線(xiàn)段AQ的垂直平分線(xiàn)與CQ的連線(xiàn)交于點(diǎn)M,則M的軌跡方程為(  )
A.=1B.=1
C.=1D.=1
D
M為AQ垂直平分線(xiàn)上一點(diǎn),則|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的軌跡為橢圓,

∴a=,c=1,則b2=a2-c2,∴橢圓的標(biāo)準(zhǔn)方程為=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:⊙M的方程為x2+(y-2)2=1,Q點(diǎn)是x軸上的動(dòng)點(diǎn),QA、QB分別切⊙M于A、B.
(1)求弦AB中點(diǎn)P的軌跡方程;
(2)若|AB|>
4
2
3
,求點(diǎn)Q的橫坐標(biāo)xQ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),分別是橢圓的左、右焦點(diǎn),過(guò)的直線(xiàn)交橢圓于兩點(diǎn),若,,則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列命題正確的有___________
①已知A,B是橢圓的左右兩個(gè)頂點(diǎn), P是該橢圓上異于A,B的任一點(diǎn),則
②已知雙曲線(xiàn)的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線(xiàn)右支上一點(diǎn),則的最小值為-2.
③若拋物線(xiàn):的焦點(diǎn)為,拋物線(xiàn)上一點(diǎn)和拋物線(xiàn)內(nèi)一點(diǎn),過(guò)點(diǎn)Q作拋物線(xiàn)的切線(xiàn),直線(xiàn)過(guò)點(diǎn)且與垂直,則平分
④已知函數(shù)是定義在R上的奇函數(shù),, 則不等式的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△ABC的周長(zhǎng)為12,頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),C為動(dòng)點(diǎn).
(1)求動(dòng)點(diǎn)C的軌跡E的方程;
(2)過(guò)原點(diǎn)作兩條關(guān)于y軸對(duì)稱(chēng)的直線(xiàn)(不與坐標(biāo)軸重合),使它們分別與曲線(xiàn)E交于兩點(diǎn),求四點(diǎn)所對(duì)應(yīng)的四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知F1,F(xiàn)2是橢圓C:=1(a>b>0)的左、右焦點(diǎn),點(diǎn)P(-,1)在橢圓上,線(xiàn)段PF2與y軸的交點(diǎn)M滿(mǎn)足=0.
(1)求橢圓C的方程;
(2)橢圓C上任一動(dòng)點(diǎn)N(x0,y0)關(guān)于直線(xiàn)y=2x的對(duì)稱(chēng)點(diǎn)為N1(x1,y1),求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)e是橢圓=1的離心率,且e∈(,1),則實(shí)數(shù)k的取值范圍是(  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C:的左右焦點(diǎn)為F1,F2離心率為,過(guò)F2的直線(xiàn)l交C與A,B兩點(diǎn),若△AF1B的周長(zhǎng)為,則C的方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過(guò)點(diǎn)且離心率為
(1)求橢圓的方程;
(2)若斜率為的直線(xiàn)兩點(diǎn),且,求直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案