已知橢圓過點且離心率為
(1)求橢圓的方程;
(2)若斜率為的直線兩點,且,求直線的方程.
(1);(2)直線的方程為.

試題分析:(1)先根據(jù)橢圓過點確定,進而根據(jù)離心率及橢圓中的關系式得到,進而求解出即可確定橢圓的方程;(2)設及直線,進而聯(lián)立直線與橢圓的方程得到,消得到,進而根據(jù)二次方程根與系數(shù)的關系可得,進而代入弦長公式,從中即可求解出的值,進而可確定直線的方程.
(1)由題知,又因為,從中求解得到
則橢圓的方程為
(2)設,直線
,消去得到


解得,又直線有兩個交點
故直線的方程為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

長方形中,.以的中點為坐標原點,建立如圖所示的直角坐標系.

(1) 求以、為焦點,且過兩點的橢圓的標準方程;
(2) 過點的直線交(1)中橢圓于兩點,是否存在直線,使得以線段為直徑的圓恰好過坐標原點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為(  )
A.=1B.=1
C.=1D.=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:,點M與C的焦點不重合,若M關于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的一個焦點在拋物線的準線上,則該橢圓的離心率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[2014·焦作模擬]已知F1,F(xiàn)2是橢圓的兩個焦點,橢圓上存在一點P,使∠F1PF2=60°,則橢圓離心率的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓過點,兩個焦點為,.
(1)求橢圓的方程;
(2),是橢圓上的兩個動點,如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓:的左頂點為,直線交橢圓兩點(下),動點和定點都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點的坐標.
(3)若為實數(shù),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的左、右焦點分別為,上頂點為A,在x軸負半軸上有一點B,滿足三點的圓與直線相切.
(1)求橢圓C的方程;
(2)過右焦點作斜率為k的直線與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案